[go: up one dir, main page]

Menu

[r31]: / trunk / lp.ado  Maximize  Restore  History

Download this file

1014 lines (892 with data), 38.6 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
********************************************************************************
* lp.ado - Linear Programming (LP) and Mixed Integer Linear Programming (MILP)
* Version: 1.0.1
* Last Updated: 25 DEC 2024
* Description:
* - implements a comprehensive framework for solving LP and MILP problems.
* - supports simplex optimization, integer constraints, and branching.
* Authors: Choonjoo Lee(Corresponding), Kyongrok Lee, Byung-ihn Lim
********************************************************************************
*! version 1.2.2 25DEC2024
*! Authors: Choonjoo Lee(Corresponding), Yongbae Ji, Kyongrok Lee, Brian Lim
*! Program: Linear Programming, Mixed Integer Linear Programming
*! Purpose: Perform LP/MILP Analysis
********************************************************************************
* HISTORY:
********************************************************************************
* 2012-10-30(THU): Basic LP/MILP Model.
* 2013-01.04(FRI): Publicly released at
* https://sourceforge.net/p/deas/code/HEAD/tree/trunk/
* 2013-08-01(THU): Presented at the 2013 Stata Conference.
* 2024-12-28(SAT): Enhanced comments and structure for clarity.
********************************************************************************
********************************************************************************
* Program Dependency Graph
********************************************************************************
* The lp.ado file contains interdependent programs and Mata functions structured
* as follows:
*
* lp (Main Program)
* ├── lpmain (LP Solver)
* │ ├── mktableau (Tableau Constructor)
* │ └── _lp_phase (Mata Phase Manager)
* │ └── lp_phase (Mata Simplex Algorithm)
* └── milp (MILP Solver)
* ├── lpmain (Relaxed LP Solver)
* ├── mktableau (Add Constraints)
* └── Recursive call to milp (Branch-and-Bound)
*
********************************************************************************
********************************************************************************
* Graph Interpretation
********************************************************************************
* 1. lp Program (Main Entry):
* - Distinguishes between LP and MILP problems.
* - Calls `lpmain` for standard LP problems.
* - Calls `milp` for MILP problems with integer constraints.
*
* 2. lpmain Program:
* - Constructs the tableau using `mktableau`.
* - Solves LP problems using `_lp_phase` Mata function for Phase I and II.
*
* 3. milp Program:
* - Handles MILP using branch-and-bound technique.
* - Uses `lpmain` for relaxed LP problems.
* - Recursively calls itself for branching on integer variables.
*
* 4. mktableau Program:
* - Prepares the tableau matrix, adding slack & artificial variables as needed.
*
* 5. Mata Functions:
* - `_lp_phase`: Manages simplex algorithm phases.
* - `lp_phase`: Implements simplex iterations for optimization.
********************************************************************************
********************************************************************************
* Program Definition Order
********************************************************************************
* 1. mktableau: Constructs the tableau matrix.
* 2. lpmain: Solves LP problems in two phases (Phase I and II).
* 3. milp: Solves MILP problems using recursive branch-and-bound.
* 4. lp: Main entry point for LP and MILP problems.
* 5. Mata Functions:
* - _lp_phase: Phase Manager.
* - lp_phase: Simplex algorithm implementation.
********************************************************************************
*! version 1.0.0 30OCT2012
*! version 1.0.1 25DEC2024
// To improve code readability, addoed comments. setting custom row names.
********************************************************************************
* Make Tableau Matrix
********************************************************************************
// -----------------------------------------------------------------------------
// This program, mktableau, constructs a Tableau Matrix for Linear Programming
// (LP) problems. The tableau is a key structure in the Simplex algorithm,
// representing the optimization problem in matrix form,
// including constraints, slack variables, and artificial variables.
// -----------------------------------------------------------------------------
// Program Definition and Syntax Parsing
// Program Definition: mktableau is defined as an rclass program to
// return matrices and scalars as results.
// Syntax Parsing:
// varlist: The list of numeric variables to include in the tableau.
// opt: Optimization goal (e.g., min or max).
// rel: Relational operators (e.g., <=, >=, =) for the constraints.
// tableau: The name of the tableau matrix to construct.
program define mktableau, rclass
syntax varlist(numeric) [if] [in], opt(string) rel(varname) tableau(name)
// Matrix Initialization:
// mkmat converts the variables (varlist) and constraints into a matrix
// (tableau). Associates row names (rel) with the matrix, representing
// the relational operators (<=, >=, =).
mkmat `varlist' `if' `in', matrix(`tableau') rownames(`rel')
// Slack and Artificial Variable Management:
// Temporary Names:
// creates placeholders (r_vec, s_mat, a_mat) for row vectors,
// slack variable matrices, and artificial variable matrices.
// Relational Operators:
// iterates over the rows of the tableau, checking each constraint's
// relational operator.
tempname r_vec s_mat a_mat
local s_names = ""
local a_names = ""
local rel_values : rownames `tableau'
forvalues i = 2/`=rowsof(`tableau')' {
matrix `r_vec' = J(rowsof(`tableau'), 1, 0)
local rel_value = word("`rel_values'", `i')
// Slack Variables for <= Constraints:
// Adds a slack variable to convert the inequality into an equation.
// Updates the slack matrix (s_mat) and names.
if ("`rel_value'" == "<" || "`rel_value'" == "<=" ) {
matrix `r_vec'[`i', 1] = 1
matrix `s_mat' = nullmat(`s_mat'), `r_vec'
local s_names = "`s_names' s`=colsof(`s_mat')'"
}
// Slack and Artificial Variables for >= Constraints:
// Adds a slack variable with a negative coefficient and
// an artificial variable.
else if ("`rel_value'" == ">" || "`rel_value'" == ">=" ) {
// slcak
matrix `r_vec'[`i', 1] = -1
matrix `s_mat' = nullmat(`s_mat'), `r_vec'
local s_names = "`s_names' s`=colsof(`s_mat')'"
// artificial
matrix `r_vec'[1, 1] = 1 // coefficients of aritificial
matrix `r_vec'[`i', 1] = 1
matrix `a_mat' = nullmat(`a_mat'), `r_vec'
local a_names = "`a_names' a`=colsof(`a_mat')'"
}
// Artificial Variables for = Constraints: adds only artificial
// variables to handle equality constraints.
else if ("`rel_value'" == "=") {
// artificial
matrix `r_vec'[1, 1] = 1 // coefficients of aritificial
matrix `r_vec'[`i', 1] = 1
matrix `a_mat' = nullmat(`a_mat'), `r_vec'
local a_names = "`a_names' a`=colsof(`a_mat')'"
}
else {
di as err "not allowed value of relational. :[`rel_value'] "
exit 198 // TODO error code confirm
}
} // end of forvalues statements
// Constructing the Final Tableau
tempname ret_tableau
// #01. Initialize objective function and variables
matrix `r_vec' = J(rowsof(`tableau'), 1, 0)
matrix `r_vec'[1,1] = 1
matrix colnames `r_vec' = "z" // Objective name
matrix `ret_tableau' = `r_vec', `tableau'[1...,1..(colsof(`tableau')-1)]
// Set custom row names. If Row names not explicitly set,
// defaults set to r1, r2, etc.
local rownames ""
forvalues i = 1/`=rowsof(`ret_tableau')' {
local rownames = "`rownames' dmu`i'"
}
matrix rownames `ret_tableau' = `rownames'
// #02. Append Slack Variables: Adds slack variables if they exist
// and counts them.
if ("`s_names'" != "") {
matrix colnames `s_mat' = `s_names'
matrix `ret_tableau' = `ret_tableau', `s_mat'
return local nslacks = colsof(`s_mat') // number of slacks
}
else return local nslacks = 0
// #03. Append Artificial Variables: Adds artificial variables if
// they exist and counts them.
if ("`a_names'" != "") {
matrix colnames `a_mat' = `a_names'
matrix `ret_tableau' = `ret_tableau', `a_mat'
return local nartificials = colsof(`a_mat') // number of artificials
}
else return local nartificials = 0
// #04. Append RHS (Right-Hand Side): Appends the RHS of the constraints
// to the final tableau.
matrix `ret_tableau' = `ret_tableau', `tableau'[1...,colsof(`tableau')]
// #05. Returning the Tableau: Returns the completed tableau matrix for
// further processing.
matrix `tableau' = `ret_tableau'
end
********************************************************************************
* LP Main - Linear Programming Main
// The provided lpmain program is a Stata script that defines the primary logic
// for solving Linear Programming (LP) problems using Phase I and Phase II of
// the two-phased revised simplex method.
********************************************************************************
program define lpmain, rclass
#del ;
// Syntax Parsing defines the required and optional arguments for the
// lpmain program.
// Required arguments:
// varlist: Variables involved in the LP problem.
// rel: Relation type (<=, >=, or =) for constraints.
// rhs: Right-hand side values of the constraints.
// opt: Optimization goal (min or max).
// Optional arguments:
// tol1: Tolerance for entering or leaving basis values (default 1e-14).
// tol2: Tolerance for B-inverse calculations (default 1e-8).
// trace: Debugging flag for detailed output during execution.
syntax varlist, rel(varname) rhs(varname) opt(string)
[
tol1(real 1e-14) tol2(real 1e-8) trace
];
#del cr
// Temporary Matrix Name Creation creates a placeholder for the Tableau
// matrix used in the simplex algorithm.
tempname tableau
// Tableau Matrix Construction:
// mktableau generates the initial tableau matrix for the LP problem.
// adds slack and artificial vars as necessary based on the rel argument.
// Metadata:
// nvars: Number of decision variables in the problem.
// nslacks: Number of slack variables added for inequalities.
// nartificials: Number of artificial variables added for equalities or
// infeasible cases.
mktableau `varlist' `rhs', opt(`opt') rel(`rel') tableau(`tableau')
local nvars : list sizeof varlist // number of variables
local nslacks = r(nslacks) // number of slacks
local nartificials = r(nartificials) // number of artificials
// LP Phase I and II Execution : This section performs calculations and
// receives results using the _lp_phase Mata code included
// in the ldea.mlib library. The following "Start of the MATA Definition
// Area" code section establishes the connection to MATA and defines
// its functionality.
// Runs the simplex algorithm in Mata for Phase I (removal of artificial
// variables) and Phase II (optimization of the objective function).
// Inputs:
// tableau: The LP tableau matrix. opt: Optimization goal (min or max).
// nvars, nslacks, nartificials: Metadata for problem structure.
// tol1, tol2: Precision tolerances. trace: Debugging output flag.
mata: _lp_phase("`tableau'", "`opt'", ///
`nvars', `nslacks', `nartificials', ///
`tol1', `tol2', "`trace'")
// Result Return:
// Returns results for use by other programs or the user.
// Returned Values:
// nvars: Number of decision variables.
// nslacks: Number of slack variables.
// nartificials: Number of artificial variables.
// tableau: The final tableau matrix after simplex iterations.
// lprslt: The final solution, including optimal values of decision
// variables and the objective function.
return local nvars = `nvars'
return local nslacks = `nslacks'
return local narticials = `nartificials'
return matrix tableau = `tableau'
return add // The return add command performs the actual task of
// adding r(lprslt) to the return list.r(lprslt)
end
program define lpmain_1, rclass
#del ;
syntax varlist, rel(varname) rhs(varname) opt(string) lprslt(name)
tableau(name) vars(real) slacks(real) artificials(real)
[
intvars(varlist) tol1(real 1e-14) tol2(real 1e-8) trace
];
#del cr
mata: _lp_phase("`tableau'", "`opt'", ///
`vars', `slacks', `artificials', ///
`tol1', `tol2', "`trace'")
tempname c_lprslt // current lprslt
matrix `c_lprslt' = r(lprslt)
matrix colnames `c_lprslt' = `: colnames(`lprslt')'
matrix rownames `c_lprslt' = `: rownames(`lprslt')'
// FIXME
// di as result _n "lprslt:"
// matrix list `lprslt', noblank nohalf noheader f(%9.6g)
// di as result _n "c_lprslt:"
// matrix list `c_lprslt', noblank nohalf noheader f(%9.6g)
if ("`intvars'" != "" && `c_lprslt'[1,1] < .) { // if MILP then,
local max_varname = ""
local max_mantissa = 0
foreach varname of varlist `intvars' {
local varvalue = ///
round(`c_lprslt'[1, colnumb(`c_lprslt',"`varname'")], `tol1')
local varvalue = `varvalue' - floor(`varvalue')
if (`varvalue' > `max_mantissa') {
local max_mantissa = `varvalue'
local max_varname = "`varname'"
}
}
if ("`max_varname'" != "") { // variables is not at all integer
tempname t_tableau t_obj t_vars t_slacks t_artificials t_rhs t_st
tempname r1_lprslt r2_lprslt temp_t
local varvalue = `c_lprslt'[1, colnumb(`c_lprslt',"`max_varname'")]
preserve
qui {
set obs `=c(N)+1'
replace `max_varname' = 1 in `c(N)'
replace `rel' = ">=" in `c(N)'
replace `rhs' = ceil(`varvalue') in `c(N)'
foreach varname of varlist `varlist' {
if ("`max_varname'" != "`varname'") {
replace `varname' = 0 in `c(N)'
}
}
}
// make tableau
mktableau `varlist' `rhs', opt(`opt') rel(`rel') tableau(`t_tableau')
local r1_vars = `vars'
local r1_slacks = r(nslacks)
local r1_artificials = r(nartificials)
// make lprslt and setup lprslt colnames and rownames
matrix `r1_lprslt' = J(1, `=(1 + `vars' + `r1_slacks')', .)
matrix `temp_t' = `t_tableau'[1...,1..`=colsof(`r1_lprslt')']
matrix colnames `r1_lprslt' = `: colnames `temp_t''
matrix rownames `r1_lprslt' = "opt_val"
// call the lp main function
lpmain `varlist', rel(`rel') rhs(`rhs') opt(`opt') ///
lprslt(`r1_lprslt') tableau(`t_tableau') ///
vars(`vars') slacks(`r1_slacks') artificials(`r1_artificials') ///
intvars(`intvars') tol1(`tol1') tol2(`tol2') `trace'
// setup result of lprslt
matrix `r1_lprslt' = r(lprslt)
/*
if (`r1_lprslt'[1,1] >= .) {
break
}
*/ restore, preserve
}
else { // select lprslt because all variables are integer
if (`lprslt'[1,1] >= .) {
matrix `lprslt' = `c_lprslt'
}
else if ("`opt'" == "max") {
if (`c_lprslt'[1,1] > `lprslt'[1,1]) {
matrix `lprslt' = `c_lprslt'
}
}
else { // else if ("`opt'" == "min") {
if (`c_lprslt'[1,1] < `lprslt'[1,1]) {
matrix `lprslt' = `c_lprslt'
}
}
}
}
else if (`c_lprslt'[1,1] < .) {
matrix `lprslt' = `c_lprslt'
}
// FIXME
di as result _n "final lprslt:"
matrix list `lprslt', noblank nohalf noheader f(%9.6g)
return matrix lprslt = `lprslt'
end
********************************************************************************
* MILP - Mixed Integer Linear Programming
// This milp program defines a recursive Mixed Integer Linear Programming (MILP)
// solution process using Stata. It combines integer constraint checking with
// recursive branch-and-bound methodology to solve optimization problems.
********************************************************************************
program define milp, rclass
#del ;
// Syntax Declaration and Initialization
// Syntax defines required inputs:
// varlist: Variables involved in the optimization.
// rel: Relation between variables (e.g., <=, >=).
// rhs: Right-hand side of the constraints.
// opt: Optimization goal (min or max).
// intvars: List of integer-constrained variables.
// Optional inputs:
// cnt: Recursive depth counter (default: 0).
// tol1, tol2: Tolerances for numeric precision.
// trace: Debugging trace flag.
// Temporary Names: tempname creates placeholders for matrices and
// variables (tableau, lprslt, etc.).
syntax varlist, rel(varname) rhs(varname) opt(string) intvars(varlist)
[
cnt(integer 0) tol1(real 1e-14) tol2(real 1e-8) trace
];
#del cr
tempname tableau lprslt baseval
// #L0. Solve Initial LP Problem: Solves the relaxed LP problem without
// considering integer constraints.
// lpmain: Solves the LP problem and stores results in:
// tableau (Problem tableau matrix), lprslt(Solution matrix).
lpmain `varlist', rel(`rel') rhs(`rhs') opt(`opt') ///
tol1(`tol1') tol2(`tol2') `trace'
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
// Debugging Output: Displays input values and results for the current iteration
// (L indicates recursion depth).
di as result _n(2) "MILP L`cnt' Input Values:"
list
matrix list `tableau', noblank nohalf noheader f(%9.6g)
di as result _n(2) "MILP L`cnt' Results: options(`opt')"
matrix list `lprslt', noblank nohalf noheader f(%9.6g)
di as text _n "--------------------------------------------------"
di as text _n
// Feasibility Check: If the LP problem is infeasible, it terminates and
// returns the results of lpmain.
if (`lprslt'[1,1] >= .) {
return add // all results of lpmain
}
else {
// Integer Constraint Validation: check that all variables is an integer
// Iterates through integer variables (intvars) and checks
// if any variable is not an integer.
// If all variables satisfy integer constraints (max_mantissa is zero),
// the solution is feasible, and the program terminates.
local max_varname = ""
local max_mantissa = 0
foreach varname of varlist `intvars' {
// because tableau and lprslt are same order
local varvalue = ///
round(`lprslt'[1, colnumb(`tableau',"`varname'")], `tol1')
local mantissa = `varvalue' - floor(`varvalue')
if (`mantissa' > `max_mantissa') {
local max_mantissa = `mantissa'
local max_varname = "`varname'"
local `baseval' = `varvalue'
}
}
// if all variables is an integer
if ("`max_varname'" == "") {
return add // all results of lpmain
}
// some variables is not an integer
else {
// #L1 : Branch 1 (>= ceil(baseval)): Adds a new constraint
// (>= ceil(baseval)) to enforce an integer solution.
// Calls milp recursively to explore this branch.
preserve
qui {
set obs `=c(N)+1'
replace `max_varname' = 1 in `c(N)'
replace `rel' = ">=" in `c(N)'
replace `rhs' = ceil(``baseval'') in `c(N)'
foreach varname of varlist `varlist' {
if ("`max_varname'" != "`varname'") {
replace `varname' = 0 in `c(N)'
}
}
}
// recursive call
milp `varlist', rel(`rel') rhs(`rhs') opt(`opt') cnt(`=`cnt'+1') ///
intvars(`intvars') tol1(`tol1') tol2(`tol2') `trace'
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
local nvars = r(nvars)
local nslacks = r(nslacks)
local nartificials = r(nartificials)
// #L2: Branch 2 (<= floor(baseval)): Adds a new constraint
// <= floor(baseval)) and recursively explores this branch.
restore, preserve
qui {
set obs `=c(N)+1'
replace `max_varname' = 1 in `c(N)'
replace `rel' = "<=" in `c(N)'
replace `rhs' = floor(``baseval'') in `c(N)'
foreach varname of varlist `varlist' {
if ("`max_varname'" != "`varname'") {
replace `varname' = 0 in `c(N)'
}
}
}
// recursive call
milp `varlist', rel(`rel') rhs(`rhs') opt(`opt') cnt(`=`cnt'+2') ///
intvars(`intvars') tol1(`tol1') tol2(`tol2') `trace'
// #L1 and #L2 are infeasible or feasible
// if #L1 is infeasible or #L2 > #L1 then select #L2
// Result Selection and Return: Compares results from Branch 1 and
// Branch 2. Retains the best feasible solution based on the
// optimization goal (min or max).
tempname L2
matrix `L2' = r(lprslt)
if ("`opt'" == "max") {
if (`lprslt'[1,1] >= . | `L2'[1,1] > `lprslt'[1,1]) {
// Select best result
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
local nvars = r(nvars)
local nslacks = r(nslacks)
local nartificials = r(nartificials)
}
}
else { // else if ("`opt'" == "min") {
if (`lprslt'[1,1] >= . | `L2'[1,1] < `lprslt'[1,1]) {
// Select best result
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
local nvars = r(nvars)
local nslacks = r(nslacks)
local nartificials = r(nartificials)
}
}
restore
// return the final results
return matrix tableau = `tableau'
return matrix lprslt = `lprslt'
return local nvars = `nvars'
return local nslacks = `nslacks'
return local narticials = `nartificials'
}
}
end
********************************************************************************
* Main Program Entry - Entry point for LP and MILP problems.
// Main program for Linear Programming and Mixed Integer Linear Programming.
// Differentiates between LP and MILP problems and delegates appropriately.
********************************************************************************
// Remove any existing program named "lp" before defining it again
// This prevents conflicts with previously defined programs
capture program drop lp
// Define a user-defined program named "lp"
// The "rclass" option allows the program to save and return results
program define lp, rclass
// Ensure compatibility with Stata version 11.0 or higher
version 11.0
// syntax checking and validation-----------------------------------------------
// rel - relational
// rhs - right hand side
// example:
// lp x1 x2 x3, min
// lp x1 x2 x3, min rel(rel_var) rhs(rhs_var)
// -----------------------------------------------------------------------------
// returns 1 if the first non-blank character in the local macro `0' is a comma,
// or if `0' is empty.
// Check if the first line of the command is empty or incorrect
// The "replay()" function validates the input
if replay() {
dis as err "vars required."
exit 198
}
// Set the command delimiter to a semicolon.
#del ;
syntax varlist(min=1) [if] [in] [using/]
[,
REL(varname) // Relational variable (default: "rel")
RHS(varname) // Right-hand side variable (default: "rhs")
MIN // Minimize optimization objective
MAX // Maximize optimization objective
INTVARS(varlist) // Integer variables (e.g., mixed-integer conditions)
ROWNAMES(varname) // specifies an optional variable in the dataset that
//contains custom row names.
TOL1(real 1e-14) // Tolerance for entering or leaving values
TOL2(real 1e-8) // Tolerance for inverse matrix calculations
TRACE // Enable/disable logging
SAVing(string) // Specify result data file name
REPLACE // Allow overwriting of result data file
];
#del cr // Restore the default delimiter to newline
// Set default value for rel to "rel" if not specified
if ("`rel'" == "") local rel = "rel"
// Set default value for rhs to "rhs" if not specified
if ("`rhs'" == "") local rhs = "rhs"
// Check if the optimization option is valid (must be either MIN or MAX)
local opt = "`min'`max'"
// Check if the optimization option is valid (must be either MIN or MAX)
if (!("`opt'" == "min" || "`opt'" == "max")) {
display as error "Error: Optimization must be MIN or MAX exclusively."
exit 198
}
// Load the dataset if the "using" option is provided
if ("`using'" != "") use "`using'", clear
// Check if a dataset is loaded and contains data
if (~(`c(N)' > 0 & `c(k)' > 0)) {
display as error "Error: A valid dataset is required!"
exit 198
}
// end of syntax checking and validation ---------------------------------------
// Disable the "more" prompt to allow smooth execution of commands
set more off
// Close any existing log file named "lp_log" if open
capture log close lp_log
// Start a new log file named "lp.log", replacing any existing file
log using "lp.log", replace text name(lp_log)
// Preserve the current dataset to allow changes w/o permanently modifying it
preserve
// Check if either an 'if' condition or an 'in' range is specified
if ("`if'" != "" | "`in'" != "") {
// Apply filtering to keep observations that satisfy the specified 'if'
// and/or 'in' conditions
qui keep `in' `if'
}
// qui (quietly) Suppresses any output or messages that would typically be
// displayed in the Stata console.
// This ensures the filtering operation is performed silently without
// interrupting the user's workflow.
// keep used to retain only the obs that satisfy certain conditions.
// Observations that do not meet the conditions are permanently removed
// from the current dataset (unless preserve was used earlier).
// in secifies a range of observations (e.g., rows or indices) to keep.
// For example, in 1/100 keeps only the first 100 observations.
// if specifies a logical condition that must be true for an observation
// to be retained. For example, if age > 18 keeps only those observations
// where the age variable is greater than 18. Combination(in and if) both
// in and if can be used together.
// -------------------------------------------------------------------------
// LP Start :
// Check if the problem is LP or MILP based on the presence of intvars.
// Solve the appropriate problem using lpmain or milp.
// Retrieve results (tableau, lprslt) and
// store metadata (nvars, nslacks, nartificials).
// Format lprslt with appropriate column and row names for clear output.
// -------------------------------------------------------------------------
// Check if the problem is LP or MILP
if ("`intvars'" == "") {
lpmain `varlist', rel(`rel') rhs(`rhs') opt(`opt') ///
tol1(`tol1') tol2(`tol2') `trace'
} // Solve as standard LP
else {
milp `varlist', rel(`rel') rhs(`rhs') opt(`opt') ///
intvars(`intvars') tol1(`tol1') tol2(`tol2') `trace'
} // If intvars is not empty, it is treated as an MILP problem.
// The milp program is called to solve the MILP problem with
// the integer constraints provided in intvars.
// Store result matrices and metadata
// tempname creates temporary names for matrices and variables.
tempname tableau lprslt temp_t
// The result matrices from the program (lpmain or milp) are saved in
// tableau: The tableau matrix representing the LP/MILP problem.
// lprslt: The resulting matrix with the optimal solution.
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
// Local Variables nvars, nslacks, nartificials store metadata:
// nvars-Number of decision variables, nslacks-Number of slack variables,
// nartificials-Number of artificial variables.
local nvars = r(nvars)
local nslacks = r(nslacks)
local nartificials = r(nartificials)
// Format results for output
// temp_t extracts a submatrix from tableau that matches the size of lprslt.
matrix `temp_t' = `tableau'[1...,1..`=colsof(`lprslt')']
// colnames copies the column names from temp_t to lprslt.
matrix colnames `lprslt' = `: colnames `temp_t''
// rownames sets the row name of lprslt to "opt_val", indicating the row
// contains the optimal value results.
matrix rownames `lprslt' = "opt_val"
// -------------------------------------------------------------------------
// REPORT:
// This section of the code is responsible for displaying the results of
// the Linear Programming (LP) or Mixed Integer Linear Programming (MILP)
// process, returning key matrices and metadata, and cleaning up the
// session by restoring the dataset and closing the log.
// -------------------------------------------------------------------------
// di as result displays the text "Input Values:" in the results window.
// _n(2) ensures a blank line above and below the message
// for better readability.
di as result _n(2) "Input Values:"
// matrix list lists the tableau matrix, which contains the input tableau
// (constraints, variables, and objective function).
// Options: noblank-Removes blank lines in the output for compactness.
// nohalf-Ensures all values are fully displayed, avoiding truncation.
// noheader: Omits the matrix name and dimensions from the display.
// f(%9.6g): Formats the matrix elements to 6 decimal places.
matrix list `tableau', noblank nohalf noheader f(%9.6g)
// di as result: Displays the text "LP Results: options(`opt')",
// indicating the optimization results (e.g., "min" or "max").
di as result _n(2) "LP Results: options(`opt')"
// matrix list: Lists the lprslt matrix, which contains the results of the
// optimization process (e.g., optimal values of variables).
// The same display options as above ensure consistent formatting.
matrix list `lprslt', noblank nohalf noheader f(%9.6g)
// di as text: adds a blank line for better visual separation in the output.
di as text _n(2) ""
// Purpose: Saves the results as retrievable return values in Stata.
// These values can be accessed using return list or programmatically by
// other commands or scripts.
// Returned Values: Matrices-tableau(Input tableau matrix), lprslt(Results
// matrix, e.g., optimal variable values).
// Scalars: nvars(Number of variables), nslacks(Number of slack variables),
// nartificials(Number of artificial variables).
return matrix tableau = `tableau'
return matrix lprslt = `lprslt'
return local nvars = `nvars'
return local nslacks = `nslacks'
return local narticials = `nartificials'
// set more on: Re-enables the "more" prompt, which was disabled earlier
// (set more off).
// restore, preserve: Restores the original dataset to its previous state,
// undoing any changes made during the program execution.
// The preserve option ensures that the restoration does not overwrite
// anything accidentally.
// log close lp_log: Closes the log file lp_log and saves it.
// This ensures that all output is properly recorded.
set more on
restore, preserve
log close lp_log
end
********************************************************************************
* Mata Definition Area
********************************************************************************
// Start of the MATA Definition Area -------------------------------------------
// The code defines two key functions in Mata for solving Linear Programming
// (LP) problems:
// _lp_phase: Manages the overall process for Phase I and Phase II of the
// Simplex algorithm. lp_phase: Performs the actual simplex iterations,
// including variable classification and optimization.
version 10
mata:
mata set matastrict on
// _lp_phase function sets up and controls the LP optimization process.
void function _lp_phase (
string scalar tableau,
string scalar opt,
real scalar vars,
real scalar slacks,
real scalar artificials,
real scalar tol1,
real scalar tol2,
string scalar trace )
{
real matrix M, VARS
real fcols
struct BoundCond matrix boundM
struct LpParam scalar param
struct LpResultStruct scalar lpresult
// 1st. Load Matrix and Variables: Loads the input tableau (M) from Stata.
// Defines variable indices for the tableau.
M = st_matrix(tableau)
VARS = (0, 1..vars+slacks, -1..-artificials, 0)
// 2rd. Set Boundaries for Variables: Defines default boundaries [0,∞].
// 0 <= weight, slacks, atrificials <= INFINITE
boundM = J(1, cols(M), BoundCond());
for (i=1; i<cols(M); i++) {
boundM[1,i].val = 0; boundM[1,i].lower = 0; boundM[1,i].upper = .
}
// 3th. Parameter Initialization: Initializes parameters based on user
// input, including Optimization goal(min or max), tolerances(tol1, tol2).
// debugging trace flag.
param.minYn = (opt == "min"); // 0: max, 1: min
param.vars = vars
param.slacks = slacks
param.artificials = artificials
param.tol1 = tol1
param.tol2 = tol2
param.trace = trace
param.tracename = "LP for RSM"
// Call lp_phase: executes the simplex algorithm, handling both Phase I
// (artificial variables) and Phase II (objective optimization).
lpresult = lp_phase(M, boundM, VARS, param)
// -------------------------------------------------------------------------
// Process Results:
// Returns: Final variable values. Objective function values. Stores
// results in the r(lprslt) matrix in Stata.
// -------------------------------------------------------------------------
if(lpresult.rc) {
LPRSLT = J(1, 1+param.vars+param.slacks, .)
}
else {
// lpresult = theta(1) + vars + slacks
LPRSLT = J(1, param.vars+param.slacks, 0)
for (j=1; j<=rows(lpresult.XB) ; j++) {
if (VARS[1,j+1] > 0) LPRSLT[1, VARS[1,j+1]] = lpresult.XB[j, 1]
}
LPRSLT = lpresult.xVal, LPRSLT
}
if (param.trace == "trace") {
msg = sprintf("%s-FINAL", param.tracename);
// printf("\n%s: original VARS.\n", msg); orgVARS
printf("\n%s: VARS.\n", msg); VARS
printf("\n%s: XB.\n", msg); lpresult.XB
printf("\n%s: LPRSLT.\n", msg); LPRSLT
}
st_matrix("r(lprslt)", LPRSLT)
}
/**
* @param VARS - Variable Index Matrix
* [z, B, N, b]'s index in the original Tableau
* @param M - Tableau: [z, A, S, Af, b] --> [z, B, N, b]
* @param phase - if have artificials, then phase 1 and 2,
* otherwise only phase 2
* @param param - parameter struct for Lp RSM
*
* @return result of LP
*/
struct LpResultStruct function lp_phase (
real matrix M,
struct BoundCond matrix boundM,
real matrix VARS,
struct LpParam scalar param )
{
real scalar phase, mrows, mcols, j, idx
string scalar tracename
real vector reorderidx, bfsidx, nonbfsidx
real vector coef_of // coefficient of objective function
struct LpParamStruct scalar lpParam
struct LpResultStruct scalar lpResult
// lp_phase function performs the core simplex algorithm steps.
// Validation Checks: ensures valid input for the optimization goal.
if (param.minYn >= .) { //
displayas("err");
_error(3351, "You have to set the minimization(1) or maximization(0) "
+ "at the LpParam.minYn")
}
// Initialize Objective Function: Extracts and temporarily removes the
// coefficients of the objective function from the tableau.
coef_of = M[1, 2..1+param.vars] // keep the objective function
replacesubmat(M, 1, 2, J(1, param.vars, 0))
// initialize matrix.
if (param.trace == "trace") {
displayas("txt")
printf("\n\n%s: initialize matrix.\n", param.tracename); M
}
mrows = rows(M); mcols = cols(M)
// Classify Variables: Identifies basic (bfsidx) and non-basic (nonbfsidx)
// variables based on tableau structure.
bfsidx = J(1, mrows-1, .); nonbfsidx = J(1, 0, .)
for (j = 2+param.vars; j <= mcols-1; j++) {
T = M[2::mrows,j]
if ((sum(T :!= 0) == 1) && (sum(T) == 1)) {
maxindex(T, 1, i, w); bfsidx[i] = j
}
else nonbfsidx = nonbfsidx, j
}
reorderidx = (1, bfsidx[1,], 2..1+param.vars, nonbfsidx[1,], mcols)
VARS = VARS[,reorderidx];
M = M[,reorderidx]; boundM = boundM[,reorderidx]
if (param.trace == "trace") {
displayas("txt")
printf("\n%s: classify basic and nonbasic.\n", tracename); M; VARS
}
// set the lp's parameters
lpParam.dmus = param.vars
lpParam.slacks = param.slacks
lpParam.artificials = param.artificials
lpParam.tol1 = param.tol1
lpParam.tol2 = param.tol2
lpParam.trace = param.trace
// Phase I - Artificial Variables: Solves the problem in Phase I to
// eliminate artificial variables.
if (param.artificials > 0) {
phase = 1
lpParam.minYn = 1; // min because of phase 1
tracename = param.tracename + "-PI"
lpResult = lp(M, boundM, VARS, 0, phase, tracename, lpParam)
if (lpResult.rc) return(lpResult)
}
// Phase II - Objective Optimization: Restores the original objective
// function and solves the optimization problem in Phase II.
phase = 2
lpParam.minYn = param.minYn // according to the optimization.
tracename = param.tracename + "-PII"
// set the objective function.
mcols = cols(M)
for (j=2; j<mcols; j++) {
idx = VARS[1,j]
if (0 < idx && idx <= param.vars) {
M[1,j] = coef_of[idx] // according to variable's index
}
}
lpResult = lp(M, boundM, VARS, 0, phase, tracename, lpParam)
// return result.
return(lpResult)
}
end
// End of the MATA Definition Area ---------------------------------------------
********************************************************************************
* Copyright and Licensing Information
********************************************************************************
/**
* Program: lp.ado (linear programming, mixed-integer programming Analysis)
* Version: 1.2.2 (28DEC2024)
* Copyright (c) 2009-2024 by Choonjoo Lee, Rep. of Korea. All Rights Reserved.
* This product includes software developed at the Lab. of Choonjoo Lee.
* Contributors: Kyung-rok Lee, Byung-ihn Lim.
*
* License:
* This program is distributed under the following license terms:
*
* Academic Free License v3.0:
* - The program may be used, modified, and redistributed freely for academic,
* educational, and research purposes.
* - Proper attribution to the authors is required in any derived work
* or publication.
*
* Commercial Restriction:
* - Commercial use, including distribution, modification, or sale for profit,
* is strictly prohibited.
* - For commercial licensing, please contact the authors directly.
*
* Warranty Disclaimer:
* - This software is provided "as-is" without warranty of any kind.
* - The authors are not responsible for any damage or data loss resulting
* from the use of this software.
*
* Citation:
* If you use this program in your research, please cite it as follows:
* Lee, C., Lee, K., and Lim, B. (2024). "LP/MILP Analysis: A Stata ADO Program.
*
* ---------------------------------------------------------------------------
* For inquiries, please contact: Choonjoo Lee <dea.stata@gmail.com>
* ---------------------------------------------------------------------------
*/