[go: up one dir, main page]

Menu

[3bfb4b]: / source / R / m1.R  Maximize  Restore  History

Download this file

238 lines (219 with data), 11.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
## Function translated automatically using 'matlab.to.r()'
## Author: Andrew Hooker
m1 <- function(model_switch,xt_ind,x,a,bpop,b_ind,bocc_ind,d,poped.db){
#
# function computes the derivative of the
# linerarized model function w$r.t. bpop
# for an individual
#
# the output is a matrix with dimensions (ind_samps X nbpop)
df_dbeta = zeros(size(xt_ind,1),sum(poped.db$parameters$notfixed_bpop))
epsi0 = zeros(1,length(poped.db$parameters$notfixed_sigma))
h = poped.db$settings$hm1
# create linearized model
if((poped.db$settings$iApproximationMethod==0 || poped.db$settings$iApproximationMethod==3) ){#FO, FOI
b_ind=zeros(poped.db$parameters$NumRanEff,1)
}
if((poped.db$settings$m1_switch[1] == 1)){
#Central approximation
k=1
for(i in 1:poped.db$parameters$nbpop){
if((poped.db$parameters$notfixed_bpop[i]==1)){
bpop_plus=bpop
bpop_minus=bpop
bpop_plus[i]=bpop_plus[i]+h
bpop_minus[i]=bpop_minus[i]-h
if((poped.db$settings$bCalculateEBE)){
start_bind = t(b_ind)
b_ind_plus = ind_estimates(poped.db$mean_data,bpop_plus,d,poped.db$parameters$sigma,start_bind,(poped.db$settings$iApproximationMethod==2),FALSE,model_switch,xt_ind,x,a,b_ind,bocc_ind,poped.db)
b_ind_minus = ind_estimates(poped.db$mean_data,bpop_minus,d,poped.db$parameters$sigma,start_bind,(poped.db$settings$iApproximationMethod==2),FALSE,model_switch,xt_ind,x,a,b_ind,bocc_ind,poped.db)
} else {
b_ind_plus = b_ind
b_ind_minus = b_ind
}
g_plus=feval(poped.db$model$fg_pointer,x,a,bpop_plus,b_ind_plus,bocc_ind)
g_minus=feval(poped.db$model$fg_pointer,x,a,bpop_minus,b_ind_minus,bocc_ind)
if((poped.db$settings$iApproximationMethod==0 || poped.db$settings$iApproximationMethod==3 || (isempty(b_ind) && isempty(bocc_ind))) ){#FO, FOI
returnArgs <- feval(poped.db$model$ferror_pointer,model_switch,xt_ind,g_plus,epsi0,poped.db)
ferror_plus <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
returnArgs <- feval(poped.db$model$ferror_pointer,model_switch,xt_ind,g_minus,epsi0,poped.db)
ferror_minus <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
if((poped.db$settings$bUseSecondOrder)){
hess_eta_plus = zeros(length(xt_ind),1)
hess_eta_minus = zeros(length(xt_ind),1)
for(o in 1:length(xt_ind)){
hessian_eta_plus = hessian_eta_complex(model_switch[o],xt_ind[o],x,a,bpop_plus,b_ind,bocc_ind,poped.db)
hessian_eta_minus = hessian_eta_complex(model_switch[o],xt_ind[o],x,a,bpop_minus,b_ind,bocc_ind,poped.db)
hess_eta_plus[o] = 1/2*trace_matrix(hessian_eta_plus*d)
hess_eta_minus[o] = 1/2*trace_matrix(hessian_eta_minus*d)
}
ferror_plus = ferror_plus+hess_eta_plus
ferror_minus = ferror_minus+hess_eta_minus
}
#if(length((ferror_plus-ferror_minus)/(2.0*h))<size(xt_ind,1)) browser()
df_dbeta[,k]=(ferror_plus-ferror_minus)/(2.0*h)
} else { #FOCE, FOCEI
returnArgs <- feval(poped.db$model$ferror_pointer,model_switch,xt_ind,g_plus,epsi0,poped.db)
ferror_plus <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
returnArgs <- LinMatrixL(model_switch,xt_ind,x,a,bpop_plus,b_ind_plus,bocc_ind,poped.db)
l_plus <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
returnArgs <- feval(poped.db$model$ferror_pointer,model_switch,xt_ind,g_minus,epsi0,poped.db)
ferror_minus <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
returnArgs <- LinMatrixL(model_switch,xt_ind,x,a,bpop_minus,b_ind_minus,bocc_ind,poped.db)
l_minus <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
occ_add_plus = zeros(size(xt_ind,1), 1)
occ_add_minus = zeros(size(xt_ind,1), 1)
if((isempty(b_ind)) ){#No IIV present
l_plus = zeros(size(xt_ind,1), 1)
l_minus = zeros(size(xt_ind,1),1)
} else {
l_plus = l_plus%*%b_ind_plus
l_minus = l_minus%*%b_ind_minus
}
if(poped.db$parameters$NumOcc!=0){
for(m in 1:poped.db$parameters$NumOcc){
returnArgs <- LinMatrixL_occ(model_switch,xt_ind,x,a,bpop_plus,b_ind,bocc_ind,m,poped.db)
l_plus_occ <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
returnArgs <- LinMatrixL_occ(model_switch,xt_ind,x,a,bpop_minus,b_ind,bocc_ind,m,poped.db)
l_minus_occ <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
occ_add_plus=occ_add_plus+l_plus_occ*(bocc_ind[,m])
occ_add_minus=occ_add_minus+l_minus_occ*(bocc_ind[,m])
}
}
df_dbeta[,k]=((ferror_plus-(l_plus+occ_add_plus))-(ferror_minus-(l_minus+occ_add_minus)))/(2*h)
}
k=k+1
}
}
} else {
#Complex derivative
if((poped.db$settings$m1_switch[1] == 0)){
k=1
for(i in 1:poped.db$parameters$nbpop){
if((poped.db$parameters$notfixed_bpop[i]==1)){
bpop_plus=bpop
bpop_plus[i] = complex(real=bpop_plus[i],imaginary=h)
g_plus=feval(poped.db$model$fg_pointer,x,a,bpop_plus,b_ind,bocc_ind)
if((poped.db$settings$iApproximationMethod==0 || poped.db$settings$iApproximationMethod==3) ){#FO, FOI
returnArgs <- feval(poped.db$model$ferror_pointer,model_switch,xt_ind,g_plus,epsi0,poped.db)
ferror_tmp <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
df_dbeta[,k] = Im(ferror_tmp)/h
} else { #FOCE, FOCEI
returnArgs <- feval(poped.db$model$ferror_pointer,model_switch,xt_ind,g_plus,epsi0,poped.db)
ferror_tmp <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
#dLinMatrixL/dbpop, dLinMatrixL_occ must be central difference to assure
#that complex step can be used within Linmatrix
bpop_plus_c = bpop
bpop_minus_c = bpop
bpop_plus_c[i]=bpop_plus_c[i]+h
bpop_minus_c[i]=bpop_minus_c[i]-h
returnArgs <- LinMatrixL(model_switch,xt_ind,x,a,bpop_plus_c,b_ind,bocc_ind,poped.db)
l_plus <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
returnArgs <- LinMatrixL(model_switch,xt_ind,x,a,bpop_minus_c,b_ind,bocc_ind,poped.db)
l_minus <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
dL_dbpop = ((l_plus-l_minus))/(2*h)
occ_add_plus = zeros(size(xt_ind,1), 1)
occ_add_minus = zeros(size(xt_ind,1), 1)
if((isempty(b_ind)) ){#No IIV present
dL_dbpop = zeros(size(xt_ind,1), 1)
} else {
dL_dbpop = dL_dbpop*b_ind
}
for(m in 1:poped.db$parameters$NumOcc){
returnArgs <- LinMatrixL_occ(model_switch,xt_ind,x,a,bpop_plus_c,b_ind,bocc_ind,m,poped.db)
l_plus_occ <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
returnArgs <- LinMatrixL_occ(model_switch,xt_ind,x,a,bpop_minus_c,b_ind,bocc_ind,m,poped.db)
l_minus_occ <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
occ_add_plus=occ_add_plus+l_plus_occ*(bocc_ind[,m])
occ_add_minus=occ_add_minus+l_minus_occ*(bocc_ind[,m])
}
df_dbeta[,k] = Im(ferror_tmp)/h-(dL_dbpop+(occ_add_plus-occ_add_minus)/(2*h))
}
k=k+1
}
}
} else {
if((poped.db$settings$m1_switch[1] == 20) ){#Analytic derivative
df_dbeta_tmp = zeros(size(xt_ind,1),length(poped.db$parameters$notfixed_bpop))
for(k in 1:size(xt_ind,1)){
df_dbeta_tmp[k,] = eval(sprintf('analytic_dff_dbpop%d(model_switch,xt_ind[k],x,a,bpop,b_ind)',model_switch[k]))
}
m=1
for(i in 1:poped.db$parameters$nbpop){
if((poped.db$parameters$notfixed_bpop[i]==1)){
df_dbeta[,m] = df_dbeta_tmp(,i)
m=m+1
}
}
} else {
if((poped.db$settings$m1_switch[1] == 30) ){#Automatic differentiation using INTLab
if((poped.db$settings$Engine$Type==2) ){#FreeMat
stop(sprintf('Automatic differentiation is not available in PopED with FreeMat'))
}
if((poped.db$settings$iApproximationMethod==0 || poped.db$settings$iApproximationMethod==3 || (isempty(b_ind) && isempty(bocc_ind))) ){#FO, FOI
stop("Automatic differentiation not currently implemented in PopED for R")
# bpop_init = gradientinit(bpop)
# fg_init=feval(poped.db$model$fg_pointer,x,a,bpop_init,b_ind,bocc_ind)
# returnArgs <- feval(poped.db$model$ferror_pointer,model_switch,xt_ind,fg_init,epsi0,poped.db)
# val <- returnArgs[[1]]
# poped.db <- returnArgs[[2]]
# df_dbeta = val$dx
# for(i in poped.db$parameters$nbpop:-1:1){
# if((poped.db$parameters$notfixed_bpop[i]==0)){
# df_dbeta[,i]=matrix(0,0,0)
# }
# }
} else { #FOCE, FOCEI
stop("Automatic differentiation not currently implemented in PopED for R")
#bpop_init = gradientinit(bpop)
# fg_init=feval(poped.db$model$fg_pointer,x,a,bpop_init,b_ind,bocc_ind)
# returnArgs <- feval(poped.db$model$ferror_pointer,model_switch,xt_ind,fg_init,epsi0,poped.db)
# val <- returnArgs[[1]]
# poped.db <- returnArgs[[2]]
# returnArgs <- dLinMatrixL_dbpop[model_switch,xt_ind,x,a,bpop,b_ind,bocc_ind,poped.db]
# cellDeriv <- returnArgs[[1]]
# L <- returnArgs[[2]]
# poped.db <- returnArgs[[3]]
# returnArgs <- dLinMatrixL_occ_dbpop[model_switch,xt_ind,x,a,bpop,b_ind,bocc_ind,poped.db]
# cellDerivOcc <- returnArgs[[1]]
# L_occ <- returnArgs[[2]]
# poped.db <- returnArgs[[3]]
# o = 1
# for(k in 1:poped.db$parameters$nbpop){
# if((poped.db$parameters$notfixed_bpop[k]==1)){
# if((isempty(cellDeriv)) ){#Add linmatrix
# l_tmp = zeros(size(xt_ind,1),1)
# } else {
# l_tmp = cellDeriv[[k]]*b_ind
# }
# occ_add = zeros(size(xt_ind,1),1)
# for(m in 1:poped.db$parameters$NumOcc ){#Add occcasion
# occ_add=occ_add+cellDerivOcc[[m,k]]*(bocc_ind(,m))
# }
# df_dbeta[,o] = val$dx(,k) - (l_tmp+occ_add)
# o=o+1
# }
# }
}
} else {
stop(sprintf('Unknown derivative option for m1'))
}
}
}
}
return(list( df_dbeta= df_dbeta,poped.db=poped.db))
}