[go: up one dir, main page]

Menu

[r38]: / coco / doc / abstract.tex  Maximize  Restore  History

Download this file

179 lines (158 with data), 8.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
\documentclass[11pt,a4paper]{article}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{epsf,exscale,times}
%TCIDATA{OutputFilter=LATEX.DLL}
%TCIDATA{LastRevised=Friday, November 30, 2007 08:34:44}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
\setlength{\parindent}{0pt}
\setlength{\parskip}{5pt plus 2pt minus 1 pt}
\topmargin
-28mm
\evensidemargin
8mm
\oddsidemargin
2mm
\textwidth
158mm
\textheight
230mm
\frenchspacing
\sloppy
\input{tcilatex}
\begin{document}
\pagestyle{empty}
\begin{flushright}
{\fontsize{9}{10}
\bf 8th. World Congress on Computational Mechanics (WCCM8)\\
5th European Congress on Computational Methods in Applied Sciences and Engineeering (ECCOMAS 2008)\\
June 30 --July 5, 2008\\Venice, Italy\\}
\vskip1.8cm
\end{flushright}
\begin{center}
{\fontsize{14}{20}\textbf{A NEW DEVELOPMENT PLATFORM FOR {PARAMETER
CONTINUATION AND }BIFURCATION ANALYSIS IN NONLINEAR DYNAMICAL SYSTEMS}}
\medskip
\textbf{*Harry Dankowicz$^{1}$ and Frank Schilder$^{2}$}
\end{center}
\centerline{
\hbox{
\begin{minipage}{8.3cm}
$^1$Department of Mechanical Science and Engineering\\
University of Illinois at Urbana-Champaign\\
Urbana, IL 61801, USA \\
danko@uiuc.edu
\end{minipage}
\quad
\begin{minipage}{6.1cm}
$^2$Department of Mathematics\\
University of Surrey\\
Guildford, GU2 7XH, United Kingdom\\
f.schilder@surrey.ac.uk
\end{minipage}
}}
\vspace{0.5cm} \textbf{Key Words:} \textit{Bifurcation analysis, Parameter
continuation, Software development, Coco.}
\begin{center}
\textbf{ABSTRACT}\\[1mm]
\end{center}
A combination of theoretical and computational tools for bifurcation
analysis of dynamical systems offers distinct advantages to brute-force
forward-time simulation [9]. Such a combination enables prediction of
behavior and response without the need for a vast collection of simulations
based at distinct initial conditions. More importantly, it may offer an
understanding of, and an underlying explanation for, changes in behavior and
response that are not available through simple simulation.
A comprehensive bifurcation analysis of a dynamical system seeks to
establish the existence of characteristic classes of responses, such as
equilibria or periodic responses. In each case, this involves locating and
tracking families of such responses under variations in system parameters in
a process known as \emph{continuation} [1,5,8,10]. The study of the
robustness of particular system responses further emphasizes parameter
values where such families merge or terminate or where the stability
characteristics of the corresponding responses change.
A number of computational tools are available for bifurcation analysis of
characteristic classes of response, such as equilibria, periodic
trajectories, homo- or heteroclinic trajectories between equilibria and/or
periodic trajectories, quasiperiodic trajectories on invariant tori, and
trajectories on associated stable and unstable manifolds. These include
general algebraic and two-point boundary-value solvers for ordinary
differential equations, such as \textsc{auto} (and specialized drivers, such
as \textsc{homcont} [2], \textsc{slidecont} [3], and \textsc{tc-hat} [13]),
\textsc{matcont} [4], and \textsc{sympercon} [14]; boundary-value solvers
for delay differential equations, such as \textsc{dde-biftool} [6] and
\textsc{pdde-cont} [12]; tools for large-scale systems, such as \textsc{loca}
[11]; and implementations in \textsc{matlab} [7].
This presentation outlines a recent software development effort in \textsc{%
matlab} of a set of core toolboxes for parameter continuation of algebraic
and multi-point boundary-value problems referred to collectively as \textsc{%
coco}. In contrast with the packages referenced above, \textsc{coco} has
been formulated with emphasis on full transparency, modularity, and great
generality giving developers of bifurcation packages that rely on this
platform great flexibility and full access to the entirety of continuation
data. In addition, \textsc{coco} makes extensive use of vectorization and
bandwidth reduction for sparse-matrix operations to guarantee an optimal
execution time at or close to what can be expected of interpreted code.
Finally, \textsc{coco} includes a unique implementation of user-defined
functions that allows the continuation of solutions with nontrivial
properties, for example, periodic orbits with a given stability margin. The
presentation discusses the philosophy behind the software development, the
strategy employed in its implementation, and a number of model examples,
including continuation of periodic orbits in hybrid dynamical systems.
This material is based upon work supported by the National Science
Foundation under Grant nos. 0237370 (HD) and 0635469 (HD) and by the
Engineering and Physical Sciences Research Council under Grant no.
EP/D063906/1 (FS).
\begin{center}
\textbf{REFERENCES}
\end{center}
\begin{tabular}{lp{145mm}}
\hspace{-2mm}{[1]} & E.L.\ Allgower and K.\ Georg. \emph{Numerical
continuation methods: An introduction}, Springer-Verlag, 1990. \\[1mm]
\hspace{-2mm}{[2]} & A.R.\ Champneys, Y.A.\ Kuznetsov, and B.\ Sandstede,
``A numerical toolbox for homoclinic bifurcation analysis,'' \emph{Internat.
J. Bifur. Chaos Appl. Sci. Engrg.}, Vol. \textbf{6(5)}, 867--887, 1996. \\%
[1mm]
\hspace{-2mm}{[3]} & F.\ Dercole and Y.A.\ Kuznetsov, ``\textsc{slidecont}:
An \textsc{auto} \textsc{97} driver for bifurcation analysis of filippov
systems,'' \emph{ACM Trans. Math. Software}, Vol. \textbf{31(1)}, 95--119,
2005. \\[1mm]
\hspace{-2mm}{[4]} & A.\ Dhooge, W.\ Govaerts, and Y.A.\ Kuznetsov,
``MATCONT : A matlab package for numerical bifurcation analysis of ODEs,''
\emph{ACM Trans. Math. Software}, Vol. \textbf{29(2)}, 141--164, 2003. \\%
[1mm]
\hspace{-2mm}{[5]} & E.J.\ Doedel, W.\ Govaerts, Y.A.\ Kuznetsov, and A.\
Dhooge, ``Numerical continuation of branch points of equilibria and periodic
orbits,'' \emph{J. Bifur. Chaos Appl. Sci. Engrg.}, Vol. \textbf{15(3)},
841--860, 2005. \\[1mm]
\hspace{-2mm}{[6]} & K.\ Engelborghs, T.\ Luzyanina, and D.\ Roose,
``Numerical bifurcation analysis of delay differential equations using
\textsc{DDE-BIFTOOL},'' \emph{ACM Trans. Math. Software}, Vol. \textbf{28(1)}%
, 1--21, 2002. \\[1mm]
\hspace{-2mm}{[7]} & W.\ Govaerts, Y.A.\ Kuznetsov, and A.\ Dhooge,
``Numerical continuation of bifurcations of limit cycles in Matlab,'' \emph{%
SIAM J. Sci. Comput.}, Vol. \textbf{27(1)}, 231--252, 2005. \\[1mm]
\hspace{-2mm}{[8]} & W.\ Govaerts, ``Numerical bifurcation analysis for
ODEs,'' \emph{J. Comput. Appl. Math.}, Vol. \textbf{125(1-2)}, 57--68, 2000.
\\[1mm]
\hspace{-2mm}{[9]} & J.\ Guckenheimer, ``Computer simulation and beyond--for
the 21st century,'' \emph{Notices Amer. Math. Soc.}, Vol. \textbf{45(9)},
1120--1123, 1998. \\[1mm]
\hspace{-2mm}{[10]} & H.B.\ Keller, \emph{Lectures on Numerical Methods in
Bifurcation Problems}, Springer-Verlag, New York, 1987. \\[1mm]
\hspace{-2mm}{[11]} & A.G.\ Salinger, E.A.\ Burroughs, R.P.\ Pawlowski,
E.T.\ Phipps, and L.A.\ Romero, ``Bifurcation tracking algorithms and
software for large scale applications,'' \emph{J. Bifur. Chaos Appl. Sci.
Engrg.}, Vol. \textbf{15(3)}, 1015--1032, 2005. \\[1mm]
\hspace{-2mm}{[12]} & R.\ Szalai, G.\ Stepan, and S.J.\ Hogan,
``Continuation of bifurcations in periodic delay-differential equations
using characteristic matrices,'' \emph{SIAM J. Sci. Comput}, Vol. \textbf{%
28(4)}, 1301--1317, 2006. \\[1mm]
\hspace{-2mm}{[13]} & P.\ Thota and H.\ Dankowicz, ``On a Boundary-Value
Formulation for the Continuation of Solution Trajectories in Hybrid
Dynamical Systems and its Implementation in the Software Toolbox TC-HAT ($%
\widehat{TC}$),'' \emph{SIAM J. App. Dyn. Syst.}, in review, 2007. \\[1mm]
\hspace{-2mm}{[14]} & C.\ Wulff and A.\ Schebesch, ``Numerical continuation
of symmetric periodic orbits,'' \emph{SIAM J. Appl. Dyn. Syst.}, Vol.
\textbf{5(3)}, 435--475, 2006.%
\end{tabular}
\end{document}