#include "PolyMath.h"
#include "Exceptions.h"
#include "MatrixMath.h"
#include <vector>
#include <string>
//#include <sstream>
//#include <numeric>
#include <math.h>
#include <iostream>
#include "Solvers.h"
#include "unsupported/Eigen/Polynomials"
namespace CoolProp {
/// Basic checks for coefficient vectors.
/** Starts with only the first coefficient dimension
* and checks the matrix size against the parameters rows and columns.
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param rows unsigned integer value that represents the desired degree of the polynomial in the 1st dimension
/// @param columns unsigned integer value that represents the desired degree of the polynomial in the 2nd dimension
bool Polynomial2D::checkCoefficients(const Eigen::MatrixXd& coefficients, const unsigned int rows, const unsigned int columns) {
if (static_cast<size_t>(coefficients.rows()) == rows) {
if (static_cast<size_t>(coefficients.cols()) == columns) {
return true;
} else {
throw ValueError(format("%s (%d): The number of columns %d does not match with %d. ", __FILE__, __LINE__, coefficients.cols(), columns));
}
} else {
throw ValueError(format("%s (%d): The number of rows %d does not match with %d. ", __FILE__, __LINE__, coefficients.rows(), rows));
}
return false;
}
/// Integration functions
/** Integrating coefficients for polynomials is done by dividing the
* original coefficients by (i+1) and elevating the order by 1
* through adding a zero as first coefficient.
* Some reslicing needs to be applied to integrate along the x-axis.
* In the brine/solution equations, reordering of the parameters
* avoids this expensive operation. However, it is included for the
* sake of completeness.
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param axis integer value that represents the desired direction of integration
/// @param times integer value that represents the desired order of integration
Eigen::MatrixXd Polynomial2D::integrateCoeffs(const Eigen::MatrixXd& coefficients, const int& axis = -1, const int& times = 1) {
if (times < 0)
throw ValueError(format("%s (%d): You have to provide a positive order for integration, %d is not valid. ", __FILE__, __LINE__, times));
if (times == 0) return Eigen::MatrixXd(coefficients);
Eigen::MatrixXd oldCoefficients;
Eigen::MatrixXd newCoefficients(coefficients);
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
break;
default:
throw ValueError(
format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
std::size_t r, c;
for (int k = 0; k < times; k++) {
oldCoefficients = Eigen::MatrixXd(newCoefficients);
r = oldCoefficients.rows(), c = oldCoefficients.cols();
newCoefficients = Eigen::MatrixXd::Zero(r + 1, c);
newCoefficients.block(1, 0, r, c) = oldCoefficients.block(0, 0, r, c);
for (size_t i = 0; i < r; ++i) {
for (size_t j = 0; j < c; ++j)
newCoefficients(i + 1, j) /= (i + 1.);
}
}
switch (axis) {
case 0:
break;
case 1:
newCoefficients.transposeInPlace();
break;
default:
throw ValueError(
format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
return newCoefficients;
}
/// Derivative coefficients calculation
/** Deriving coefficients for polynomials is done by multiplying the
* original coefficients with i and lowering the order by 1.
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param axis integer value that represents the desired direction of derivation
/// @param times integer value that represents the desired order of integration
Eigen::MatrixXd Polynomial2D::deriveCoeffs(const Eigen::MatrixXd& coefficients, const int& axis, const int& times) {
if (times < 0)
throw ValueError(format("%s (%d): You have to provide a positive order for derivation, %d is not valid. ", __FILE__, __LINE__, times));
if (times == 0) return Eigen::MatrixXd(coefficients);
// Recursion is also possible, but not recommended
//Eigen::MatrixXd newCoefficients;
//if (times > 1) newCoefficients = deriveCoeffs(coefficients, axis, times-1);
//else newCoefficients = Eigen::MatrixXd(coefficients);
Eigen::MatrixXd newCoefficients;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
break;
default:
throw ValueError(
format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
std::size_t r, c, i, j;
for (int k = 0; k < times; k++) {
r = newCoefficients.rows(), c = newCoefficients.cols();
for (i = 1; i < r; ++i) {
for (j = 0; j < c; ++j)
newCoefficients(i, j) *= i;
}
removeRow(newCoefficients, 0);
}
switch (axis) {
case 0:
break;
case 1:
newCoefficients.transposeInPlace();
break;
default:
throw ValueError(
format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
return newCoefficients;
}
/// The core functions to evaluate the polynomial
/** It is here we implement the different special
* functions that allow us to specify certain
* types of polynomials.
* The derivative might bee needed during the
* solution process of the solver. It could also
* be a protected function...
*/
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input
double Polynomial2D::evaluate(const Eigen::MatrixXd& coefficients, const double& x_in) {
double result = Eigen::poly_eval(makeVector(coefficients), x_in);
if (this->do_debug())
std::cout << "Running 1D evaluate(" << mat_to_string(coefficients) << ", x_in:" << vec_to_string(x_in) << "): " << result << std::endl;
return result;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
double Polynomial2D::evaluate(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in) {
size_t r = coefficients.rows();
double result = evaluate(coefficients.row(r - 1), y_in);
for (int i = static_cast<int>(r) - 2; i >= 0; i--) {
result *= x_in;
result += evaluate(coefficients.row(i), y_in);
}
if (this->do_debug())
std::cout << "Running 2D evaluate(" << mat_to_string(coefficients) << ", x_in:" << vec_to_string(x_in)
<< ", y_in:" << vec_to_string(y_in) << "): " << result << std::endl;
return result;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis unsigned integer value that represents the axis to derive for (0=x, 1=y)
double Polynomial2D::derivative(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& axis = -1) {
return this->evaluate(this->deriveCoeffs(coefficients, axis, 1), x_in, y_in);
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis unsigned integer value that represents the axis to integrate for (0=x, 1=y)
double Polynomial2D::integral(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& axis = -1) {
return this->evaluate(this->integrateCoeffs(coefficients, axis, 1), x_in, y_in);
}
/// Uses the Brent solver to find the roots of p(x_in,y_in)-z_in
/// @param res Poly2DResidual object to calculate residuals and derivatives
/// @param min double value that represents the minimum value
/// @param max double value that represents the maximum value
double Polynomial2D::solve_limits(Poly2DResidual* res, const double& min, const double& max) {
if (do_debug()) std::cout << format("Called solve_limits with: min=%f and max=%f", min, max) << std::endl;
double macheps = DBL_EPSILON;
double tol = DBL_EPSILON * 1e3;
int maxiter = 10;
double result = Brent(res, min, max, macheps, tol, maxiter);
if (this->do_debug()) std::cout << "Brent solver message: " << res->errstring << std::endl;
return result;
}
/// Uses the Newton solver to find the roots of p(x_in,y_in)-z_in
/// @param res Poly2DResidual object to calculate residuals and derivatives
/// @param guess double value that represents the start value
double Polynomial2D::solve_guess(Poly2DResidual* res, const double& guess) {
if (do_debug()) std::cout << format("Called solve_guess with: guess=%f ", guess) << std::endl;
//set_debug_level(1000);
double tol = DBL_EPSILON * 1e3;
int maxiter = 10;
double result = Newton(res, guess, tol, maxiter);
if (this->do_debug()) std::cout << "Newton solver message: " << res->errstring << std::endl;
return result;
}
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
Eigen::VectorXd Polynomial2D::solve(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const int& axis = -1) {
std::size_t r = coefficients.rows(), c = coefficients.cols();
Eigen::VectorXd tmpCoefficients;
switch (axis) {
case 0:
tmpCoefficients = Eigen::VectorXd::Zero(r);
for (size_t i = 0; i < r; i++) {
tmpCoefficients(i, 0) = evaluate(coefficients.row(i), in);
}
break;
case 1:
tmpCoefficients = Eigen::VectorXd::Zero(c);
for (size_t i = 0; i < c; i++) {
tmpCoefficients(i, 0) = evaluate(coefficients.col(i), in);
}
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for the solver, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
tmpCoefficients(0, 0) -= z_in;
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string(Eigen::MatrixXd(tmpCoefficients)) << std::endl;
Eigen::PolynomialSolver<double, Eigen::Dynamic> polySolver(tmpCoefficients);
std::vector<double> rootsVec;
polySolver.realRoots(rootsVec);
if (this->do_debug()) std::cout << "Real roots: " << vec_to_string(rootsVec) << std::endl;
return vec_to_eigen(rootsVec);
//return rootsVec[0]; // TODO: implement root selection algorithm
}
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
double Polynomial2D::solve_limits(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& min, const double& max,
const int& axis) {
Poly2DResidual res = Poly2DResidual(*this, coefficients, in, z_in, axis);
return solve_limits(&res, min, max);
}
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param guess double value that represents the start value
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
double Polynomial2D::solve_guess(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& guess, const int& axis) {
Poly2DResidual res = Poly2DResidual(*this, coefficients, in, z_in, axis);
return solve_guess(&res, guess);
}
/// Simple polynomial function generator. <- Deprecated due to poor performance, use Horner-scheme instead
/** Base function to produce n-th order polynomials
* based on the length of the coefficient vector.
* Starts with only the first coefficient at x^0. */
double Polynomial2D::simplePolynomial(std::vector<double> const& coefficients, double x) {
double result = 0.;
for (unsigned int i = 0; i < coefficients.size(); i++) {
result += coefficients[i] * pow(x, (int)i);
}
if (this->do_debug())
std::cout << "Running simplePolynomial(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << "): " << result << std::endl;
return result;
}
double Polynomial2D::simplePolynomial(std::vector<std::vector<double>> const& coefficients, double x, double y) {
double result = 0;
for (unsigned int i = 0; i < coefficients.size(); i++) {
result += pow(x, (int)i) * simplePolynomial(coefficients[i], y);
}
if (this->do_debug())
std::cout << "Running simplePolynomial(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << ", " << vec_to_string(y)
<< "): " << result << std::endl;
return result;
}
/// Horner function generator implementations
/** Represent polynomials according to Horner's scheme.
* This avoids unnecessary multiplication and thus
* speeds up calculation.
*/
double Polynomial2D::baseHorner(std::vector<double> const& coefficients, double x) {
double result = 0;
for (int i = static_cast<int>(coefficients.size()) - 1; i >= 0; i--) {
result *= x;
result += coefficients[i];
}
if (this->do_debug())
std::cout << "Running baseHorner(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << "): " << result << std::endl;
return result;
}
double Polynomial2D::baseHorner(std::vector<std::vector<double>> const& coefficients, double x, double y) {
double result = 0;
for (int i = static_cast<int>(coefficients.size() - 1); i >= 0; i--) {
result *= x;
result += baseHorner(coefficients[i], y);
}
if (this->do_debug())
std::cout << "Running baseHorner(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << ", " << vec_to_string(y)
<< "): " << result << std::endl;
return result;
}
Poly2DResidual::Poly2DResidual(Polynomial2D& poly, const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const int& axis) {
switch (axis) {
case iX:
case iY:
this->axis = axis;
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension to the solver, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
this->poly = poly;
this->coefficients = coefficients;
this->derIsSet = false;
this->in = in;
this->z_in = z_in;
}
double Poly2DResidual::call(double target) {
if (axis == iX) return poly.evaluate(coefficients, target, in) - z_in;
if (axis == iY) return poly.evaluate(coefficients, in, target) - z_in;
return -_HUGE;
}
double Poly2DResidual::deriv(double target) {
if (!this->derIsSet) {
this->coefficientsDer = poly.deriveCoeffs(coefficients, axis);
this->derIsSet = true;
}
return poly.evaluate(coefficientsDer, target, in);
}
// /// Integration functions
// /** Integrating coefficients for polynomials is done by dividing the
// * original coefficients by (i+1) and elevating the order by 1
// * through adding a zero as first coefficient.
// * Some reslicing needs to be applied to integrate along the x-axis.
// * In the brine/solution equations, reordering of the parameters
// * avoids this expensive operation. However, it is included for the
// * sake of completeness.
// */
// /// @param coefficients matrix containing the ordered coefficients
// /// @param axis unsigned integer value that represents the desired direction of integration
// /// @param times integer value that represents the desired order of integration
// /// @param firstExponent integer value that represents the first exponent of the polynomial in axis direction
// Eigen::MatrixXd integrateCoeffs(const Eigen::MatrixXd &coefficients, const int &axis, const int ×, const int &firstExponent);
//
/// Derivative coefficients calculation
/** Deriving coefficients for polynomials is done by multiplying the
* original coefficients with i and lowering the order by 1.
*
* Remember that the first exponent might need to be adjusted after derivation.
* It has to be lowered by times:
* derCoeffs = deriveCoeffs(coefficients, axis, times, firstExponent);
* firstExponent -= times;
*
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param axis unsigned integer value that represents the desired direction of derivation
/// @param times integer value that represents the desired order of derivation
/// @param firstExponent integer value that represents the lowest exponent of the polynomial in axis direction
Eigen::MatrixXd Polynomial2DFrac::deriveCoeffs(const Eigen::MatrixXd& coefficients, const int& axis, const int& times, const int& firstExponent) {
if (times < 0)
throw ValueError(format("%s (%d): You have to provide a positive order for derivation, %d is not valid. ", __FILE__, __LINE__, times));
if (times == 0) return Eigen::MatrixXd(coefficients);
// Recursion is also possible, but not recommended
//Eigen::MatrixXd newCoefficients;
//if (times > 1) newCoefficients = deriveCoeffs(coefficients, axis, times-1);
//else newCoefficients = Eigen::MatrixXd(coefficients);
Eigen::MatrixXd newCoefficients;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
break;
default:
throw ValueError(
format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
std::size_t r = newCoefficients.rows(), c = newCoefficients.cols();
std::size_t i, j;
for (int k = 0; k < times; k++) {
for (i = 0; i < r; ++i) {
for (j = 0; j < c; ++j) {
newCoefficients(i, j) *= double(i) + double(firstExponent);
}
}
}
switch (axis) {
case 0:
break;
case 1:
newCoefficients.transposeInPlace();
break;
default:
throw ValueError(
format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
return newCoefficients;
}
/// The core functions to evaluate the polynomial
/** It is here we implement the different special
* functions that allow us to specify certain
* types of polynomials.
*
* Try to avoid many calls to the derivative and integral functions.
* Both of them have to calculate the new coefficients internally,
* which slows things down. Instead, you should use the deriveCoeffs
* and integrateCoeffs functions and store the coefficient matrix
* you need for future calls to evaluate derivative and integral.
*/
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param firstExponent integer value that represents the lowest exponent of the polynomial
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
double Polynomial2DFrac::evaluate(const Eigen::MatrixXd& coefficients, const double& x_in, const int& firstExponent, const double& x_base) {
size_t r = coefficients.rows();
size_t c = coefficients.cols();
if ((r != 1) && (c != 1)) {
throw ValueError(format("%s (%d): You have a 2D coefficient matrix (%d,%d), please use the 2D functions. ", __FILE__, __LINE__,
coefficients.rows(), coefficients.cols()));
}
if ((firstExponent < 0) && (std::abs(x_in - x_base) < DBL_EPSILON)) {
throw ValueError(
format("%s (%d): A fraction cannot be evaluated with zero as denominator, x_in-x_base=%f ", __FILE__, __LINE__, x_in - x_base));
}
Eigen::MatrixXd tmpCoeffs(coefficients);
if (c == 1) {
tmpCoeffs.transposeInPlace();
c = r;
r = 1;
}
Eigen::MatrixXd newCoeffs;
double negExp = 0; // First we treat the negative exponents
double posExp = 0; // then the positive exponents
for (int i = 0; i > firstExponent; i--) { // only for firstExponent<0
if (c > 0) {
negExp += tmpCoeffs(0, 0);
removeColumn(tmpCoeffs, 0);
}
negExp /= x_in - x_base;
c = tmpCoeffs.cols();
}
for (int i = 0; i < firstExponent; i++) { // only for firstExponent>0
newCoeffs = Eigen::MatrixXd::Zero(r, c + 1);
newCoeffs.block(0, 1, r, c) = tmpCoeffs.block(0, 0, r, c);
tmpCoeffs = Eigen::MatrixXd(newCoeffs);
c = tmpCoeffs.cols();
}
if (c > 0) posExp += Eigen::poly_eval(Eigen::RowVectorXd(tmpCoeffs), x_in - x_base);
return negExp + posExp;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
double Polynomial2DFrac::evaluate(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& x_exp, const int& y_exp,
const double& x_base, const double& y_base) {
if ((x_exp < 0) && (std::abs(x_in - x_base) < DBL_EPSILON)) {
throw ValueError(
format("%s (%d): A fraction cannot be evaluated with zero as denominator, x_in-x_base=%f ", __FILE__, __LINE__, x_in - x_base));
}
if ((y_exp < 0) && (std::abs(y_in - y_base) < DBL_EPSILON)) {
throw ValueError(
format("%s (%d): A fraction cannot be evaluated with zero as denominator, y_in-y_base=%f ", __FILE__, __LINE__, y_in - y_base));
}
Eigen::MatrixXd tmpCoeffs(coefficients);
Eigen::MatrixXd newCoeffs;
size_t r = tmpCoeffs.rows();
size_t c = tmpCoeffs.cols();
double negExp = 0; // First we treat the negative exponents
double posExp = 0; // then the positive exponents
for (int i = 0; i > x_exp; i--) { // only for x_exp<0
r = tmpCoeffs.rows();
if (r > 0) {
negExp += evaluate(tmpCoeffs.row(0), y_in, y_exp, y_base);
removeRow(tmpCoeffs, 0);
}
negExp /= x_in - x_base;
}
r = tmpCoeffs.rows();
for (int i = 0; i < x_exp; i++) { // only for x_exp>0
newCoeffs = Eigen::MatrixXd::Zero(r + 1, c);
newCoeffs.block(1, 0, r, c) = tmpCoeffs.block(0, 0, r, c);
tmpCoeffs = Eigen::MatrixXd(newCoeffs);
r += 1; // r = tmpCoeffs.rows();
}
//r = tmpCoeffs.rows();
if (r > 0) posExp += evaluate(tmpCoeffs.row(r - 1), y_in, y_exp, y_base);
for (int i = static_cast<int>(r) - 2; i >= 0; i--) {
posExp *= x_in - x_base;
posExp += evaluate(tmpCoeffs.row(i), y_in, y_exp, y_base);
}
if (this->do_debug()) std::cout << "Running 2D evaluate(" << mat_to_string(coefficients) << ", " << std::endl;
if (this->do_debug())
std::cout << "x_in:" << vec_to_string(x_in) << ", y_in:" << vec_to_string(y_in) << ", x_exp:" << vec_to_string(x_exp)
<< ", y_exp:" << vec_to_string(y_exp) << ", x_base:" << vec_to_string(x_base) << ", y_base:" << vec_to_string(y_base)
<< "): " << negExp + posExp << std::endl;
return negExp + posExp;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis integer value that represents the axis to derive for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
double Polynomial2DFrac::derivative(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& axis, const int& x_exp,
const int& y_exp, const double& x_base, const double& y_base) {
Eigen::MatrixXd newCoefficients;
int der_exp, other_exp;
double der_val, other_val;
double int_base, other_base;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
der_exp = x_exp;
other_exp = y_exp;
der_val = x_in;
other_val = y_in;
int_base = x_base;
other_base = y_base;
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
der_exp = y_exp;
other_exp = x_exp;
der_val = y_in;
other_val = x_in;
int_base = y_base;
other_base = x_base;
break;
default:
throw ValueError(
format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
const int times = 1;
newCoefficients = deriveCoeffs(newCoefficients, 0, times, der_exp);
der_exp -= times;
return evaluate(newCoefficients, der_val, other_val, der_exp, other_exp, int_base, other_base);
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis integer value that represents the axis to integrate for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
/// @param ax_val double value that represents the base value for the definite integral on the chosen axis.
double Polynomial2DFrac::integral(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& axis, const int& x_exp,
const int& y_exp, const double& x_base, const double& y_base, const double& ax_val) {
Eigen::MatrixXd newCoefficients;
int int_exp, other_exp;
double int_val, other_val;
double int_base, other_base;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
int_exp = x_exp;
other_exp = y_exp;
int_val = x_in;
other_val = y_in;
int_base = x_base;
other_base = y_base;
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
int_exp = y_exp;
other_exp = x_exp;
int_val = y_in;
other_val = x_in;
int_base = y_base;
other_base = x_base;
break;
default:
throw ValueError(
format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
if (int_exp < -1)
throw NotImplementedError(
format("%s (%d): This function is only implemented for lowest exponents >= -1, int_exp=%d ", __FILE__, __LINE__, int_exp));
// TODO: Fix this and allow the direct calculation of integrals
if (std::abs(ax_val) > DBL_EPSILON)
throw NotImplementedError(
format("%s (%d): This function is only implemented for indefinite integrals, ax_val=%d ", __FILE__, __LINE__, ax_val));
size_t r = newCoefficients.rows();
size_t c = newCoefficients.cols();
if (int_exp == -1) {
if (std::abs(int_base) < DBL_EPSILON) {
Eigen::MatrixXd tmpCoefficients = newCoefficients.row(0) * log(int_val - int_base);
newCoefficients = integrateCoeffs(newCoefficients.block(1, 0, r - 1, c), 0, 1);
newCoefficients.row(0) = tmpCoefficients;
return evaluate(newCoefficients, int_val, other_val, 0, other_exp, int_base, other_base);
} else {
// Reduce the coefficients to the integration dimension:
newCoefficients = Eigen::MatrixXd(r, 1);
for (std::size_t i = 0; i < r; i++) {
newCoefficients(i, 0) = evaluate(coefficients.row(i), other_val, other_exp, other_base);
}
return fracIntCentral(newCoefficients.transpose(), int_val, int_base);
}
}
Eigen::MatrixXd tmpCoeffs;
r = newCoefficients.rows();
for (int i = 0; i < int_exp; i++) { // only for x_exp>0
tmpCoeffs = Eigen::MatrixXd::Zero(r + 1, c);
tmpCoeffs.block(1, 0, r, c) = newCoefficients.block(0, 0, r, c);
newCoefficients = Eigen::MatrixXd(tmpCoeffs);
r += 1; // r = newCoefficients.rows();
}
return evaluate(integrateCoeffs(newCoefficients, 0, 1), int_val, other_val, 0, other_exp, int_base, other_base);
}
/// Returns a vector with ALL the real roots of p(x_in,y_in)-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param axis integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
Eigen::VectorXd Polynomial2DFrac::solve(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const int& axis, const int& x_exp,
const int& y_exp, const double& x_base, const double& y_base) {
Eigen::MatrixXd newCoefficients;
Eigen::VectorXd tmpCoefficients;
int solve_exp, other_exp;
double input;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
solve_exp = x_exp;
other_exp = y_exp;
input = in - y_base;
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
solve_exp = y_exp;
other_exp = x_exp;
input = in - x_base;
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for the solver, %d is not valid. ", __FILE__, __LINE__, axis));
break;
}
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string(Eigen::MatrixXd(newCoefficients)) << std::endl;
const size_t r = newCoefficients.rows();
for (size_t i = 0; i < r; i++) {
newCoefficients(i, 0) = evaluate(newCoefficients.row(i), input, other_exp);
}
//Eigen::VectorXd tmpCoefficients;
if (solve_exp >= 0) { // extend vector to zero exponent
tmpCoefficients = Eigen::VectorXd::Zero(r + solve_exp);
tmpCoefficients.block(solve_exp, 0, r, 1) = newCoefficients.block(0, 0, r, 1);
tmpCoefficients(0, 0) -= z_in;
} else { // check if vector reaches to zero exponent
int diff = 1 - static_cast<int>(r) - solve_exp; // How many entries have to be added
tmpCoefficients = Eigen::VectorXd::Zero(r + std::max(diff, 0));
tmpCoefficients.block(0, 0, r, 1) = newCoefficients.block(0, 0, r, 1);
tmpCoefficients(r + diff - 1, 0) -= z_in;
throw NotImplementedError(format("%s (%d): Currently, there is no solver for the generalised polynomial, an exponent of %d is not valid. ",
__FILE__, __LINE__, solve_exp));
}
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string(Eigen::MatrixXd(tmpCoefficients)) << std::endl;
Eigen::PolynomialSolver<double, -1> polySolver(tmpCoefficients);
std::vector<double> rootsVec;
polySolver.realRoots(rootsVec);
if (this->do_debug()) std::cout << "Real roots: " << vec_to_string(rootsVec) << std::endl;
return vec_to_eigen(rootsVec);
//return rootsVec[0]; // TODO: implement root selection algorithm
}
/// Uses the Brent solver to find the roots of p(x_in,y_in)-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param min double value that represents the minimum value
/// @param max double value that represents the maximum value
/// @param axis integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
double Polynomial2DFrac::solve_limits(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& min, const double& max,
const int& axis, const int& x_exp, const int& y_exp, const double& x_base, const double& y_base) {
if (do_debug())
std::cout << format("Called solve_limits with: %f, %f, %f, %f, %d, %d, %d, %f, %f", in, z_in, min, max, axis, x_exp, y_exp, x_base, y_base)
<< std::endl;
Poly2DFracResidual res = Poly2DFracResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base);
return Polynomial2D::solve_limits(&res, min, max);
} //TODO: Implement tests for this solver
/// Uses the Newton solver to find the roots of p(x_in,y_in)-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param guess double value that represents the start value
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
double Polynomial2DFrac::solve_guess(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& guess, const int& axis,
const int& x_exp, const int& y_exp, const double& x_base, const double& y_base) {
if (do_debug())
std::cout << format("Called solve_guess with: %f, %f, %f, %d, %d, %d, %f, %f", in, z_in, guess, axis, x_exp, y_exp, x_base, y_base)
<< std::endl;
Poly2DFracResidual res = Poly2DFracResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base);
return Polynomial2D::solve_guess(&res, guess);
} //TODO: Implement tests for this solver
/// Uses the Brent solver to find the roots of Int(p(x_in,y_in))-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param min double value that represents the minimum value
/// @param max double value that represents the maximum value
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
/// @param int_axis axis for the integration (0=x, 1=y)
double Polynomial2DFrac::solve_limitsInt(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& min,
const double& max, const int& axis, const int& x_exp, const int& y_exp, const double& x_base,
const double& y_base, const int& int_axis) {
Poly2DFracIntResidual res = Poly2DFracIntResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base, int_axis);
return Polynomial2D::solve_limits(&res, min, max);
} //TODO: Implement tests for this solver
/// Uses the Newton solver to find the roots of Int(p(x_in,y_in))-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param guess double value that represents the start value
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
/// @param int_axis axis for the integration (0=x, 1=y)
double Polynomial2DFrac::solve_guessInt(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& guess,
const int& axis, const int& x_exp, const int& y_exp, const double& x_base, const double& y_base,
const int& int_axis) {
Poly2DFracIntResidual res = Poly2DFracIntResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base, int_axis);
return Polynomial2D::solve_guess(&res, guess);
} //TODO: Implement tests for this solver
/** Simple integrated centred(!) polynomial function generator divided by independent variable.
* We need to rewrite some of the functions in order to
* use central fit. Having a central temperature xbase
* allows for a better fit, but requires a different
* formulation of the fracInt function group. Other
* functions are not affected.
* Starts with only the first coefficient at x^0 */
//Helper functions to calculate binomial coefficients:
//http://rosettacode.org/wiki/Evaluate_binomial_coefficients#C.2B.2B
/// @param nValue integer value that represents the order of the factorial
double Polynomial2DFrac::factorial(const int& nValue) {
double value = 1;
for (int i = 2; i <= nValue; i++)
value = value * i;
return value;
}
/// @param nValue integer value that represents the upper part of the factorial
/// @param nValue2 integer value that represents the lower part of the factorial
double Polynomial2DFrac::binom(const int& nValue, const int& nValue2) {
if (nValue2 == 1) return nValue * 1.0;
return (factorial(nValue)) / (factorial(nValue2) * factorial((nValue - nValue2)));
}
///Helper function to calculate the D vector:
/// @param m integer value that represents order
/// @param x_in double value that represents the current input
/// @param x_base double value that represents the basis for the fit
Eigen::MatrixXd Polynomial2DFrac::fracIntCentralDvector(const int& m, const double& x_in, const double& x_base) {
if (m < 1) throw ValueError(format("%s (%d): You have to provide coefficients, a vector length of %d is not a valid. ", __FILE__, __LINE__, m));
Eigen::MatrixXd D = Eigen::MatrixXd::Zero(1, m);
double tmp;
// TODO: This can be optimized using the Horner scheme!
for (int j = 0; j < m; j++) { // loop through row
tmp = pow(-1.0, j) * log(x_in) * pow(x_base, j);
for (int k = 0; k < j; k++) { // internal loop for every entry
tmp += binom(j, k) * pow(-1.0, k) / (j - k) * pow(x_in, j - k) * pow(x_base, k);
}
D(0, j) = tmp;
}
return D;
}
///Indefinite integral of a centred polynomial divided by its independent variable
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input
/// @param x_base double value that represents the basis for the fit
double Polynomial2DFrac::fracIntCentral(const Eigen::MatrixXd& coefficients, const double& x_in, const double& x_base) {
if (coefficients.rows() != 1) {
throw ValueError(format("%s (%d): You have a 2D coefficient matrix (%d,%d), please use the 2D functions. ", __FILE__, __LINE__,
coefficients.rows(), coefficients.cols()));
}
int m = static_cast<int>(coefficients.cols());
Eigen::MatrixXd D = fracIntCentralDvector(m, x_in, x_base);
double result = 0;
for (int j = 0; j < m; j++) {
result += coefficients(0, j) * D(0, j);
}
if (this->do_debug())
std::cout << "Running fracIntCentral(" << mat_to_string(coefficients) << ", " << vec_to_string(x_in) << ", " << vec_to_string(x_base)
<< "): " << result << std::endl;
return result;
}
Poly2DFracResidual::Poly2DFracResidual(Polynomial2DFrac& poly, const Eigen::MatrixXd& coefficients, const double& in, const double& z_in,
const int& axis, const int& x_exp, const int& y_exp, const double& x_base, const double& y_base)
: Poly2DResidual(poly, coefficients, in, z_in, axis) {
this->x_exp = x_exp;
this->y_exp = y_exp;
this->x_base = x_base;
this->y_base = y_base;
}
double Poly2DFracResidual::call(double target) {
if (axis == iX) return poly.evaluate(coefficients, target, in, x_exp, y_exp, x_base, y_base) - z_in;
if (axis == iY) return poly.evaluate(coefficients, in, target, x_exp, y_exp, x_base, y_base) - z_in;
return _HUGE;
}
double Poly2DFracResidual::deriv(double target) {
if (axis == iX) return poly.derivative(coefficients, target, in, axis, x_exp, y_exp, x_base, y_base);
if (axis == iY) return poly.derivative(coefficients, in, target, axis, x_exp, y_exp, x_base, y_base);
return _HUGE;
}
Poly2DFracIntResidual::Poly2DFracIntResidual(Polynomial2DFrac& poly, const Eigen::MatrixXd& coefficients, const double& in, const double& z_in,
const int& axis, const int& x_exp, const int& y_exp, const double& x_base, const double& y_base,
const int& int_axis)
: Poly2DFracResidual(poly, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base) {
this->int_axis = int_axis;
}
double Poly2DFracIntResidual::call(double target) {
if (axis == iX) return poly.integral(coefficients, target, in, int_axis, x_exp, y_exp, x_base, y_base) - z_in;
if (axis == iY) return poly.integral(coefficients, in, target, int_axis, x_exp, y_exp, x_base, y_base) - z_in;
return _HUGE;
}
double Poly2DFracIntResidual::deriv(double target) {
if (axis == iX) return poly.evaluate(coefficients, target, in, x_exp, y_exp, x_base, y_base);
if (axis == iY) return poly.evaluate(coefficients, in, target, x_exp, y_exp, x_base, y_base);
return _HUGE;
}
} // namespace CoolProp
#ifdef ENABLE_CATCH
# include <math.h>
# include <iostream>
# include <catch2/catch_all.hpp>
TEST_CASE("Internal consistency checks and example use cases for PolyMath.cpp", "[PolyMath]") {
bool PRINT = false;
std::string tmpStr;
/// Test case for "SylthermXLT" by "Dow Chemicals"
std::vector<double> cHeat;
cHeat.clear();
cHeat.push_back(+1.1562261074E+03);
cHeat.push_back(+2.0994549103E+00);
cHeat.push_back(+7.7175381057E-07);
cHeat.push_back(-3.7008444051E-20);
double deltaT = 0.1;
double Tmin = 273.15 - 50;
double Tmax = 273.15 + 250;
double Tinc = 200;
std::vector<std::vector<double>> cHeat2D;
cHeat2D.push_back(cHeat);
cHeat2D.push_back(cHeat);
cHeat2D.push_back(cHeat);
Eigen::MatrixXd matrix2D = CoolProp::vec_to_eigen(cHeat2D);
Eigen::MatrixXd matrix2Dtmp;
std::vector<std::vector<double>> vec2Dtmp;
SECTION("Coefficient parsing") {
CoolProp::Polynomial2D poly;
CHECK_THROWS(poly.checkCoefficients(matrix2D, 4, 5));
CHECK(poly.checkCoefficients(matrix2D, 3, 4));
}
SECTION("Coefficient operations") {
Eigen::MatrixXd matrix;
CoolProp::Polynomial2D poly;
CHECK_THROWS(poly.integrateCoeffs(matrix2D));
CHECK_NOTHROW(matrix = poly.integrateCoeffs(matrix2D, 0));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_NOTHROW(matrix = poly.integrateCoeffs(matrix2D, 1));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_THROWS(poly.deriveCoeffs(matrix2D));
CHECK_NOTHROW(matrix = poly.deriveCoeffs(matrix2D, 0));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_NOTHROW(matrix = poly.deriveCoeffs(matrix2D, 1));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
}
SECTION("Evaluation and test values") {
Eigen::MatrixXd matrix = CoolProp::vec_to_eigen(cHeat);
CoolProp::Polynomial2D poly;
double acc = 0.0001;
double T = 273.15 + 50;
double c = poly.evaluate(matrix, T, 0.0);
double d = 1834.746;
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
c = 2.0;
c = poly.solve(matrix, 0.0, d, 0)[0];
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
CHECK(check_abs(c, T, acc));
}
c = 2.0;
c = poly.solve_limits(matrix, 0.0, d, -50, 750, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
CHECK(check_abs(c, T, acc));
}
c = 2.0;
c = poly.solve_guess(matrix, 0.0, d, 350, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
CHECK(check_abs(c, T, acc));
}
// T = 0.0;
// solve.setGuess(75+273.15);
// T = solve.polyval(cHeat,c);
// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
// printf("From object: T = %3.3f \t K \n",T);
//
// T = 0.0;
// solve.setLimits(273.15+10,273.15+100);
// T = solve.polyval(cHeat,c);
// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
// printf("From object: T = %3.3f \t K \n",T);
}
SECTION("Integration and derivation tests") {
CoolProp::Polynomial2D poly;
Eigen::MatrixXd matrix(matrix2D);
Eigen::MatrixXd matrixInt = poly.integrateCoeffs(matrix, 1);
Eigen::MatrixXd matrixDer = poly.deriveCoeffs(matrix, 1);
Eigen::MatrixXd matrixInt2 = poly.integrateCoeffs(matrix, 1, 2);
Eigen::MatrixXd matrixDer2 = poly.deriveCoeffs(matrix, 1, 2);
CHECK_THROWS(poly.evaluate(matrix, 0.0));
double x = 0.3, y = 255.3, val1, val2, val3, val4;
//CHECK( std::abs( polyInt.derivative(x,y,0)-poly2D.evaluate(x,y) ) <= 1e-10 );
std::string tmpStr;
double acc = 0.001;
for (double T = Tmin; T < Tmax; T += Tinc) {
val1 = poly.evaluate(matrix, x, T - deltaT);
val2 = poly.evaluate(matrix, x, T + deltaT);
val3 = (val2 - val1) / 2 / deltaT;
val4 = poly.evaluate(matrixDer, x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrixDer);
CAPTURE(tmpStr);
CHECK(check_abs(val3, val4, acc));
}
for (double T = Tmin; T < Tmax; T += Tinc) {
val1 = poly.evaluate(matrixDer, x, T - deltaT);
val2 = poly.evaluate(matrixDer, x, T + deltaT);
val3 = (val2 - val1) / 2 / deltaT;
val4 = poly.evaluate(matrixDer2, x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrixDer);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrixDer2);
CAPTURE(tmpStr);
CHECK(check_abs(val3, val4, acc));
}
for (double T = Tmin; T < Tmax; T += Tinc) {
val1 = poly.evaluate(matrixInt, x, T - deltaT);
val2 = poly.evaluate(matrixInt, x, T + deltaT);
val3 = (val2 - val1) / 2 / deltaT;
val4 = poly.evaluate(matrix, x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrixInt);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(val3, val4, acc));
}
for (double T = Tmin; T < Tmax; T += Tinc) {
val1 = poly.evaluate(matrixInt2, x, T - deltaT);
val2 = poly.evaluate(matrixInt2, x, T + deltaT);
val3 = (val2 - val1) / 2 / deltaT;
val4 = poly.evaluate(matrixInt, x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrixInt2);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrixInt);
CAPTURE(tmpStr);
CHECK(check_abs(val3, val4, acc));
}
for (double T = Tmin; T < Tmax; T += Tinc) {
val1 = poly.evaluate(matrix, x, T);
val2 = poly.derivative(matrixInt, x, T, 1);
CAPTURE(T);
CAPTURE(val1);
CAPTURE(val2);
CHECK(check_abs(val1, val2, acc));
}
for (double T = Tmin; T < Tmax; T += Tinc) {
val1 = poly.derivative(matrix, x, T, 1);
val2 = poly.evaluate(matrixDer, x, T);
CAPTURE(T);
CAPTURE(val1);
CAPTURE(val2);
CHECK(check_abs(val1, val2, acc));
}
}
SECTION("Testing Polynomial2DFrac") {
Eigen::MatrixXd matrix = CoolProp::vec_to_eigen(cHeat);
CoolProp::Polynomial2D poly;
CoolProp::Polynomial2DFrac frac;
double acc = 0.0001;
double T = 273.15 + 50;
double a, b;
double c = poly.evaluate(matrix, T, 0.0);
double d = frac.evaluate(matrix, T, 0.0, 0, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
c = poly.evaluate(matrix, T, 0.0) / T / T;
d = frac.evaluate(matrix, T, 0.0, -2, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
matrix = CoolProp::vec_to_eigen(cHeat2D);
double y = 0.1;
c = poly.evaluate(matrix, T, y) / T / T;
d = frac.evaluate(matrix, T, y, -2, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
c = poly.evaluate(matrix, T, y) / y / y;
d = frac.evaluate(matrix, T, y, 0, -2);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
c = poly.evaluate(matrix, T, y) / T / T / y / y;
d = frac.evaluate(matrix, T, y, -2, -2);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
c = poly.evaluate(matrix, T, y) / T / T * y * y;
d = frac.evaluate(matrix, T, y, -2, 2);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
matrix = CoolProp::vec_to_eigen(cHeat);
T = 273.15 + 50;
c = 145.59157247249246;
d = frac.integral(matrix, T, 0.0, 0, -1, 0) - frac.integral(matrix, 273.15 + 25, 0.0, 0, -1, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
T = 423.15;
c = 3460.895272;
d = frac.integral(matrix, T, 0.0, 0, -1, 0, 348.15, 0.0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
deltaT = 0.01;
for (T = Tmin; T < Tmax; T += Tinc) {
a = poly.evaluate(matrix, T - deltaT, y);
b = poly.evaluate(matrix, T + deltaT, y);
c = (b - a) / 2.0 / deltaT;
d = frac.derivative(matrix, T, y, 0, 0, 0);
CAPTURE(a);
CAPTURE(b);
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
T = 273.15 + 150;
c = -2.100108045;
d = frac.derivative(matrix, T, 0.0, 0, 0, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
c = -0.006456574589;
d = frac.derivative(matrix, T, 0.0, 0, -1, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
c = frac.evaluate(matrix, T, 0.0, 2, 0);
d = frac.solve(matrix, 0.0, c, 0, 2, 0)[0];
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(T, d, acc));
}
c = frac.evaluate(matrix, T, 0.0, 0, 0);
d = frac.solve(matrix, 0.0, c, 0, 0, 0)[0];
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(T, d, acc));
}
c = frac.evaluate(matrix, T, 0.0, -1, 0);
CHECK_THROWS(d = frac.solve(matrix, 0.0, c, 0, -1, 0)[0]);
// {
// CAPTURE(T);
// CAPTURE(c);
// CAPTURE(d);
// tmpStr = CoolProp::mat_to_string(matrix);
// CAPTURE(tmpStr);
// CHECK( check_abs(T,d,acc) );
// }
d = frac.solve_limits(matrix, 0.0, c, T - 10, T + 10, 0, -1, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(T, d, acc));
}
d = frac.solve_guess(matrix, 0.0, c, T - 10, 0, -1, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(T, d, acc));
}
c = -0.00004224550082;
d = frac.derivative(matrix, T, 0.0, 0, -2, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK(check_abs(c, d, acc));
}
c = frac.evaluate(matrix, T, 0.0, 0, 0, 0.0, 0.0);
d = frac.solve(matrix, 0.0, c, 0, 0, 0, 0.0, 0.0)[0];
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(Eigen::MatrixXd(frac.solve(matrix, 0.0, c, 0, 0, 0, 250, 0.0)));
CAPTURE(tmpStr);
CHECK(check_abs(T, d, acc));
}
}
}
#endif /* ENABLE_CATCH */