[go: up one dir, main page]

Menu

[7864c2]: / src / PolyMath.cpp  Maximize  Restore  History

Download this file

1372 lines (1186 with data), 57.8 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
#include "PolyMath.h"
#include "Exceptions.h"
#include "MatrixMath.h"
#include <vector>
#include <string>
//#include <sstream>
//#include <numeric>
#include <math.h>
#include <iostream>
#include "Solvers.h"
#include "unsupported/Eigen/Polynomials"
namespace CoolProp{
/// Basic checks for coefficient vectors.
/** Starts with only the first coefficient dimension
* and checks the matrix size against the parameters rows and columns.
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param rows unsigned integer value that represents the desired degree of the polynomial in the 1st dimension
/// @param columns unsigned integer value that represents the desired degree of the polynomial in the 2nd dimension
bool Polynomial2D::checkCoefficients(const Eigen::MatrixXd &coefficients, const unsigned int rows, const unsigned int columns){
if (static_cast<size_t>(coefficients.rows()) == rows) {
if (static_cast<size_t>(coefficients.cols()) == columns) {
return true;
} else {
throw ValueError(format("%s (%d): The number of columns %d does not match with %d. ",__FILE__,__LINE__,coefficients.cols(),columns));
}
} else {
throw ValueError(format("%s (%d): The number of rows %d does not match with %d. ",__FILE__,__LINE__,coefficients.rows(),rows));
}
return false;
}
/// Integration functions
/** Integrating coefficients for polynomials is done by dividing the
* original coefficients by (i+1) and elevating the order by 1
* through adding a zero as first coefficient.
* Some reslicing needs to be applied to integrate along the x-axis.
* In the brine/solution equations, reordering of the parameters
* avoids this expensive operation. However, it is included for the
* sake of completeness.
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param axis integer value that represents the desired direction of integration
/// @param times integer value that represents the desired order of integration
Eigen::MatrixXd Polynomial2D::integrateCoeffs(const Eigen::MatrixXd &coefficients, const int &axis = -1, const int &times = 1){
if (times < 0) throw ValueError(format("%s (%d): You have to provide a positive order for integration, %d is not valid. ",__FILE__,__LINE__,times));
if (times == 0) return Eigen::MatrixXd(coefficients);
Eigen::MatrixXd oldCoefficients;
Eigen::MatrixXd newCoefficients(coefficients);
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
std::size_t r, c;
for (int k = 0; k < times; k++){
oldCoefficients = Eigen::MatrixXd(newCoefficients);
r = oldCoefficients.rows(), c = oldCoefficients.cols();
newCoefficients = Eigen::MatrixXd::Zero(r+1,c);
newCoefficients.block(1,0,r,c) = oldCoefficients.block(0,0,r,c);
for (size_t i = 0; i < r; ++i) {
for (size_t j = 0; j < c; ++j) newCoefficients(i+1,j) /= (i+1.);
}
}
switch (axis) {
case 0:
break;
case 1:
newCoefficients.transposeInPlace();
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
return newCoefficients;
}
/// Derivative coefficients calculation
/** Deriving coefficients for polynomials is done by multiplying the
* original coefficients with i and lowering the order by 1.
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param axis integer value that represents the desired direction of derivation
/// @param times integer value that represents the desired order of integration
Eigen::MatrixXd Polynomial2D::deriveCoeffs(const Eigen::MatrixXd &coefficients, const int &axis, const int &times){
if (times < 0) throw ValueError(format("%s (%d): You have to provide a positive order for derivation, %d is not valid. ",__FILE__,__LINE__,times));
if (times == 0) return Eigen::MatrixXd(coefficients);
// Recursion is also possible, but not recommended
//Eigen::MatrixXd newCoefficients;
//if (times > 1) newCoefficients = deriveCoeffs(coefficients, axis, times-1);
//else newCoefficients = Eigen::MatrixXd(coefficients);
Eigen::MatrixXd newCoefficients;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
std::size_t r, c, i, j;
for (int k = 0; k < times; k++){
r = newCoefficients.rows(), c = newCoefficients.cols();
for (i = 1; i < r; ++i) {
for (j = 0; j < c; ++j) newCoefficients(i,j) *= i;
}
removeRow(newCoefficients,0);
}
switch (axis) {
case 0:
break;
case 1:
newCoefficients.transposeInPlace();
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
return newCoefficients;
}
/// The core functions to evaluate the polynomial
/** It is here we implement the different special
* functions that allow us to specify certain
* types of polynomials.
* The derivative might bee needed during the
* solution process of the solver. It could also
* be a protected function...
*/
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input
double Polynomial2D::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in){
double result = Eigen::poly_eval( makeVector(coefficients), x_in );
if (this->do_debug()) std::cout << "Running 1D evaluate(" << mat_to_string(coefficients) << ", x_in:" << vec_to_string(x_in) << "): " << result << std::endl;
return result;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
double Polynomial2D::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in){
size_t r = coefficients.rows();
double result = evaluate(coefficients.row(r-1), y_in);
for(int i=static_cast<int>(r)-2; i>=0; i--) {
result *= x_in;
result += evaluate(coefficients.row(i), y_in);
}
if (this->do_debug()) std::cout << "Running 2D evaluate(" << mat_to_string(coefficients) << ", x_in:" << vec_to_string(x_in) << ", y_in:" << vec_to_string(y_in) << "): " << result << std::endl;
return result;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis unsigned integer value that represents the axis to derive for (0=x, 1=y)
double Polynomial2D::derivative(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &axis = -1){
return this->evaluate(this->deriveCoeffs(coefficients, axis, 1), x_in, y_in);
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis unsigned integer value that represents the axis to integrate for (0=x, 1=y)
double Polynomial2D::integral(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &axis = -1){
return this->evaluate(this->integrateCoeffs(coefficients, axis, 1), x_in,y_in);
}
/// Uses the Brent solver to find the roots of p(x_in,y_in)-z_in
/// @param res Poly2DResidual object to calculate residuals and derivatives
/// @param min double value that represents the minimum value
/// @param max double value that represents the maximum value
double Polynomial2D::solve_limits(Poly2DResidual* res, const double &min, const double &max){
if (do_debug()) std::cout << format("Called solve_limits with: min=%f and max=%f", min, max) << std::endl;
double macheps = DBL_EPSILON;
double tol = DBL_EPSILON*1e3;
int maxiter = 10;
double result = Brent(res, min, max, macheps, tol, maxiter);
if (this->do_debug()) std::cout << "Brent solver message: " << res->errstring << std::endl;
return result;
}
/// Uses the Newton solver to find the roots of p(x_in,y_in)-z_in
/// @param res Poly2DResidual object to calculate residuals and derivatives
/// @param guess double value that represents the start value
double Polynomial2D::solve_guess(Poly2DResidual* res, const double &guess){
if (do_debug()) std::cout << format("Called solve_guess with: guess=%f ", guess) << std::endl;
//set_debug_level(1000);
double tol = DBL_EPSILON*1e3;
int maxiter = 10;
double result = Newton(res, guess, tol, maxiter);
if (this->do_debug()) std::cout << "Newton solver message: " << res->errstring << std::endl;
return result;
}
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
Eigen::VectorXd Polynomial2D::solve(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis = -1){
std::size_t r = coefficients.rows(), c = coefficients.cols();
Eigen::VectorXd tmpCoefficients;
switch (axis) {
case 0:
tmpCoefficients = Eigen::VectorXd::Zero(r);
for(size_t i=0; i<r; i++) {
tmpCoefficients(i,0) = evaluate(coefficients.row(i), in);
}
break;
case 1:
tmpCoefficients = Eigen::VectorXd::Zero(c);
for(size_t i=0; i<c; i++) {
tmpCoefficients(i,0) = evaluate(coefficients.col(i), in);
}
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for the solver, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
tmpCoefficients(0,0) -= z_in;
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string(Eigen::MatrixXd(tmpCoefficients)) << std::endl;
Eigen::PolynomialSolver<double,Eigen::Dynamic> polySolver( tmpCoefficients );
std::vector<double> rootsVec;
polySolver.realRoots(rootsVec);
if (this->do_debug()) std::cout << "Real roots: " << vec_to_string(rootsVec) << std::endl;
return vec_to_eigen(rootsVec);
//return rootsVec[0]; // TODO: implement root selection algorithm
}
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
double Polynomial2D::solve_limits(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &min, const double &max, const int &axis){
Poly2DResidual res = Poly2DResidual(*this, coefficients, in, z_in, axis);
return solve_limits(&res, min, max);
}
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param guess double value that represents the start value
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
double Polynomial2D::solve_guess(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &guess, const int &axis){
Poly2DResidual res = Poly2DResidual(*this, coefficients, in, z_in, axis);
return solve_guess(&res, guess);
}
/// Simple polynomial function generator. <- Deprecated due to poor performance, use Horner-scheme instead
/** Base function to produce n-th order polynomials
* based on the length of the coefficient vector.
* Starts with only the first coefficient at x^0. */
double Polynomial2D::simplePolynomial(std::vector<double> const& coefficients, double x){
double result = 0.;
for(unsigned int i=0; i<coefficients.size();i++) {
result += coefficients[i] * pow(x,(int)i);
}
if (this->do_debug()) std::cout << "Running simplePolynomial(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << "): " << result << std::endl;
return result;
}
double Polynomial2D::simplePolynomial(std::vector<std::vector<double> > const& coefficients, double x, double y){
double result = 0;
for(unsigned int i=0; i<coefficients.size();i++) {
result += pow(x,(int)i) * simplePolynomial(coefficients[i], y);
}
if (this->do_debug()) std::cout << "Running simplePolynomial(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << ", " << vec_to_string(y) << "): " << result << std::endl;
return result;
}
/// Horner function generator implementations
/** Represent polynomials according to Horner's scheme.
* This avoids unnecessary multiplication and thus
* speeds up calculation.
*/
double Polynomial2D::baseHorner(std::vector<double> const& coefficients, double x){
double result = 0;
for(int i=static_cast<int>(coefficients.size())-1; i>=0; i--) {
result *= x;
result += coefficients[i];
}
if (this->do_debug()) std::cout << "Running baseHorner(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << "): " << result << std::endl;
return result;
}
double Polynomial2D::baseHorner(std::vector< std::vector<double> > const& coefficients, double x, double y){
double result = 0;
for (int i = static_cast<int>(coefficients.size() - 1); i >= 0; i--) {
result *= x;
result += baseHorner(coefficients[i], y);
}
if (this->do_debug()) std::cout << "Running baseHorner(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << ", " << vec_to_string(y) << "): " << result << std::endl;
return result;
}
Poly2DResidual::Poly2DResidual(Polynomial2D &poly, const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis){
switch (axis) {
case iX:
case iY:
this->axis = axis;
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension to the solver, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
this->poly = poly;
this->coefficients = coefficients;
this->derIsSet = false;
this->in = in;
this->z_in = z_in;
}
double Poly2DResidual::call(double target){
if (axis==iX) return poly.evaluate(coefficients,target,in)-z_in;
if (axis==iY) return poly.evaluate(coefficients,in,target)-z_in;
return -_HUGE;
}
double Poly2DResidual::deriv(double target){
if (!this->derIsSet) {
this->coefficientsDer = poly.deriveCoeffs(coefficients,axis);
this->derIsSet = true;
}
return poly.evaluate(coefficientsDer,target,in);
}
// /// Integration functions
// /** Integrating coefficients for polynomials is done by dividing the
// * original coefficients by (i+1) and elevating the order by 1
// * through adding a zero as first coefficient.
// * Some reslicing needs to be applied to integrate along the x-axis.
// * In the brine/solution equations, reordering of the parameters
// * avoids this expensive operation. However, it is included for the
// * sake of completeness.
// */
// /// @param coefficients matrix containing the ordered coefficients
// /// @param axis unsigned integer value that represents the desired direction of integration
// /// @param times integer value that represents the desired order of integration
// /// @param firstExponent integer value that represents the first exponent of the polynomial in axis direction
// Eigen::MatrixXd integrateCoeffs(const Eigen::MatrixXd &coefficients, const int &axis, const int &times, const int &firstExponent);
//
/// Derivative coefficients calculation
/** Deriving coefficients for polynomials is done by multiplying the
* original coefficients with i and lowering the order by 1.
*
* Remember that the first exponent might need to be adjusted after derivation.
* It has to be lowered by times:
* derCoeffs = deriveCoeffs(coefficients, axis, times, firstExponent);
* firstExponent -= times;
*
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param axis unsigned integer value that represents the desired direction of derivation
/// @param times integer value that represents the desired order of derivation
/// @param firstExponent integer value that represents the lowest exponent of the polynomial in axis direction
Eigen::MatrixXd Polynomial2DFrac::deriveCoeffs(const Eigen::MatrixXd &coefficients, const int &axis, const int &times, const int &firstExponent){
if (times < 0) throw ValueError(format("%s (%d): You have to provide a positive order for derivation, %d is not valid. ",__FILE__,__LINE__,times));
if (times == 0) return Eigen::MatrixXd(coefficients);
// Recursion is also possible, but not recommended
//Eigen::MatrixXd newCoefficients;
//if (times > 1) newCoefficients = deriveCoeffs(coefficients, axis, times-1);
//else newCoefficients = Eigen::MatrixXd(coefficients);
Eigen::MatrixXd newCoefficients;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
std::size_t r = newCoefficients.rows(), c = newCoefficients.cols();
std::size_t i, j;
for (int k = 0; k < times; k++){
for (i = 0; i < r; ++i) {
for (j = 0; j < c; ++j) {
newCoefficients(i,j) *= double(i)+double(firstExponent);
}
}
}
switch (axis) {
case 0:
break;
case 1:
newCoefficients.transposeInPlace();
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
return newCoefficients;
}
/// The core functions to evaluate the polynomial
/** It is here we implement the different special
* functions that allow us to specify certain
* types of polynomials.
*
* Try to avoid many calls to the derivative and integral functions.
* Both of them have to calculate the new coefficients internally,
* which slows things down. Instead, you should use the deriveCoeffs
* and integrateCoeffs functions and store the coefficient matrix
* you need for future calls to evaluate derivative and integral.
*/
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param firstExponent integer value that represents the lowest exponent of the polynomial
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
double Polynomial2DFrac::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in, const int &firstExponent, const double &x_base){
size_t r = coefficients.rows();
size_t c = coefficients.cols();
if ( (r!=1) && (c!=1) ) {
throw ValueError(format("%s (%d): You have a 2D coefficient matrix (%d,%d), please use the 2D functions. ",__FILE__,__LINE__,coefficients.rows(),coefficients.cols()));
}
if ( (firstExponent<0) && (std::abs(x_in-x_base)<DBL_EPSILON)) {
throw ValueError(format("%s (%d): A fraction cannot be evaluated with zero as denominator, x_in-x_base=%f ",__FILE__,__LINE__,x_in-x_base));
}
Eigen::MatrixXd tmpCoeffs(coefficients);
if ( c==1 ) {
tmpCoeffs.transposeInPlace();
c = r;
r = 1;
}
Eigen::MatrixXd newCoeffs;
double negExp = 0;// First we treat the negative exponents
double posExp = 0;// then the positive exponents
for(int i=0; i>firstExponent; i--) { // only for firstExponent<0
if (c>0) {
negExp += tmpCoeffs(0,0);
removeColumn(tmpCoeffs, 0);
}
negExp /= x_in-x_base;
c=tmpCoeffs.cols();
}
for(int i=0; i<firstExponent; i++) { // only for firstExponent>0
newCoeffs = Eigen::MatrixXd::Zero(r,c+1);
newCoeffs.block(0,1,r,c) = tmpCoeffs.block(0,0,r,c);
tmpCoeffs = Eigen::MatrixXd(newCoeffs);
c = tmpCoeffs.cols();
}
if (c>0) posExp += Eigen::poly_eval( Eigen::RowVectorXd(tmpCoeffs), x_in-x_base );
return negExp+posExp;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
double Polynomial2DFrac::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base){
if ( (x_exp<0) && (std::abs(x_in-x_base)<DBL_EPSILON)) {
throw ValueError(format("%s (%d): A fraction cannot be evaluated with zero as denominator, x_in-x_base=%f ",__FILE__,__LINE__,x_in-x_base));
}
if ( (y_exp<0) && (std::abs(y_in-y_base)<DBL_EPSILON)) {
throw ValueError(format("%s (%d): A fraction cannot be evaluated with zero as denominator, y_in-y_base=%f ",__FILE__,__LINE__,y_in-y_base));
}
Eigen::MatrixXd tmpCoeffs(coefficients);
Eigen::MatrixXd newCoeffs;
size_t r = tmpCoeffs.rows();
size_t c = tmpCoeffs.cols();
double negExp = 0;// First we treat the negative exponents
double posExp = 0;// then the positive exponents
for(int i=0; i>x_exp; i--) { // only for x_exp<0
r = tmpCoeffs.rows();
if (r>0) {
negExp += evaluate(tmpCoeffs.row(0), y_in, y_exp, y_base);
removeRow(tmpCoeffs, 0);
}
negExp /= x_in-x_base;
}
r = tmpCoeffs.rows();
for(int i=0; i<x_exp; i++) { // only for x_exp>0
newCoeffs = Eigen::MatrixXd::Zero(r+1,c);
newCoeffs.block(1,0,r,c) = tmpCoeffs.block(0,0,r,c);
tmpCoeffs = Eigen::MatrixXd(newCoeffs);
r += 1; // r = tmpCoeffs.rows();
}
//r = tmpCoeffs.rows();
if (r>0) posExp += evaluate(tmpCoeffs.row(r-1), y_in, y_exp, y_base);
for (int i = static_cast<int>(r) - 2; i >= 0; i--) {
posExp *= x_in-x_base;
posExp += evaluate(tmpCoeffs.row(i), y_in, y_exp, y_base);
}
if (this->do_debug()) std::cout << "Running 2D evaluate(" << mat_to_string(coefficients) << ", " << std::endl;
if (this->do_debug()) std::cout << "x_in:" << vec_to_string(x_in) << ", y_in:" << vec_to_string(y_in) << ", x_exp:" << vec_to_string(x_exp) << ", y_exp:" << vec_to_string(y_exp) << ", x_base:" << vec_to_string(x_base) << ", y_base:" << vec_to_string(y_base) << "): " << negExp+posExp << std::endl;
return negExp+posExp;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis integer value that represents the axis to derive for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
double Polynomial2DFrac::derivative(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base){
Eigen::MatrixXd newCoefficients;
int der_exp,other_exp;
double der_val,other_val;
double int_base, other_base;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
der_exp = x_exp;
other_exp = y_exp;
der_val = x_in;
other_val = y_in;
int_base = x_base;
other_base = y_base;
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
der_exp = y_exp;
other_exp = x_exp;
der_val = y_in;
other_val = x_in;
int_base = y_base;
other_base = x_base;
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
const int times = 1;
newCoefficients = deriveCoeffs(newCoefficients,0,times,der_exp);
der_exp -= times;
return evaluate(newCoefficients,der_val,other_val,der_exp,other_exp,int_base,other_base);
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis integer value that represents the axis to integrate for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
/// @param ax_val double value that represents the base value for the definite integral on the chosen axis.
double Polynomial2DFrac::integral(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base, const double &ax_val){
Eigen::MatrixXd newCoefficients;
int int_exp,other_exp;
double int_val,other_val;
double int_base, other_base;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
int_exp = x_exp;
other_exp = y_exp;
int_val = x_in;
other_val = y_in;
int_base = x_base;
other_base = y_base;
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
int_exp = y_exp;
other_exp = x_exp;
int_val = y_in;
other_val = x_in;
int_base = y_base;
other_base = x_base;
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
if (int_exp<-1) throw NotImplementedError(format("%s (%d): This function is only implemented for lowest exponents >= -1, int_exp=%d ",__FILE__,__LINE__,int_exp));
// TODO: Fix this and allow the direct calculation of integrals
if (std::abs(ax_val)>DBL_EPSILON) throw NotImplementedError(format("%s (%d): This function is only implemented for indefinite integrals, ax_val=%d ",__FILE__,__LINE__,ax_val));
size_t r = newCoefficients.rows();
size_t c = newCoefficients.cols();
if (int_exp==-1) {
if (std::abs(int_base)<DBL_EPSILON){
Eigen::MatrixXd tmpCoefficients = newCoefficients.row(0) * log(int_val-int_base);
newCoefficients = integrateCoeffs(newCoefficients.block(1,0,r-1,c), 0, 1);
newCoefficients.row(0) = tmpCoefficients;
return evaluate(newCoefficients,int_val,other_val,0,other_exp,int_base,other_base);
}
else {
// Reduce the coefficients to the integration dimension:
newCoefficients = Eigen::MatrixXd(r,1);
for (std::size_t i=0; i<r; i++){
newCoefficients(i,0) = evaluate(coefficients.row(i), other_val, other_exp, other_base);
}
return fracIntCentral(newCoefficients.transpose(),int_val,int_base);
}
}
Eigen::MatrixXd tmpCoeffs;
r = newCoefficients.rows();
for(int i=0; i<int_exp; i++) { // only for x_exp>0
tmpCoeffs = Eigen::MatrixXd::Zero(r+1,c);
tmpCoeffs.block(1,0,r,c) = newCoefficients.block(0,0,r,c);
newCoefficients = Eigen::MatrixXd(tmpCoeffs);
r += 1; // r = newCoefficients.rows();
}
return evaluate(integrateCoeffs(newCoefficients, 0, 1),int_val,other_val,0,other_exp,int_base,other_base);
}
/// Returns a vector with ALL the real roots of p(x_in,y_in)-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param axis integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
Eigen::VectorXd Polynomial2DFrac::solve(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base){
Eigen::MatrixXd newCoefficients;
Eigen::VectorXd tmpCoefficients;
int solve_exp,other_exp;
double input;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd(coefficients);
solve_exp = x_exp;
other_exp = y_exp;
input = in - y_base;
break;
case 1:
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
solve_exp = y_exp;
other_exp = x_exp;
input = in - x_base;
break;
default:
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for the solver, %d is not valid. ",__FILE__,__LINE__,axis));
break;
}
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string(Eigen::MatrixXd(newCoefficients)) << std::endl;
const size_t r = newCoefficients.rows();
for(size_t i=0; i<r; i++) {
newCoefficients(i,0) = evaluate(newCoefficients.row(i), input, other_exp);
}
//Eigen::VectorXd tmpCoefficients;
if (solve_exp>=0) { // extend vector to zero exponent
tmpCoefficients = Eigen::VectorXd::Zero(r+solve_exp);
tmpCoefficients.block(solve_exp,0,r,1) = newCoefficients.block(0,0,r,1);
tmpCoefficients(0,0) -= z_in;
} else {// check if vector reaches to zero exponent
int diff = 1 - static_cast<int>(r) - solve_exp; // How many entries have to be added
tmpCoefficients = Eigen::VectorXd::Zero(r+std::max(diff,0));
tmpCoefficients.block(0,0,r,1) = newCoefficients.block(0,0,r,1);
tmpCoefficients(r+diff-1,0) -= z_in;
throw NotImplementedError(format("%s (%d): Currently, there is no solver for the generalised polynomial, an exponent of %d is not valid. ",__FILE__,__LINE__,solve_exp));
}
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string( Eigen::MatrixXd(tmpCoefficients) ) << std::endl;
Eigen::PolynomialSolver<double,-1> polySolver( tmpCoefficients );
std::vector<double> rootsVec;
polySolver.realRoots(rootsVec);
if (this->do_debug()) std::cout << "Real roots: " << vec_to_string(rootsVec) << std::endl;
return vec_to_eigen(rootsVec);
//return rootsVec[0]; // TODO: implement root selection algorithm
}
/// Uses the Brent solver to find the roots of p(x_in,y_in)-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param min double value that represents the minimum value
/// @param max double value that represents the maximum value
/// @param axis integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
double Polynomial2DFrac::solve_limits(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &min, const double &max, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base){
if (do_debug()) std::cout << format("Called solve_limits with: %f, %f, %f, %f, %d, %d, %d, %f, %f",in, z_in, min, max, axis, x_exp, y_exp, x_base, y_base) << std::endl;
Poly2DFracResidual res = Poly2DFracResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base);
return Polynomial2D::solve_limits(&res, min, max);
} //TODO: Implement tests for this solver
/// Uses the Newton solver to find the roots of p(x_in,y_in)-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param guess double value that represents the start value
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
double Polynomial2DFrac::solve_guess(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &guess, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base){
if (do_debug()) std::cout << format("Called solve_guess with: %f, %f, %f, %d, %d, %d, %f, %f",in, z_in, guess, axis, x_exp, y_exp, x_base, y_base) << std::endl;
Poly2DFracResidual res = Poly2DFracResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base);
return Polynomial2D::solve_guess(&res, guess);
} //TODO: Implement tests for this solver
/// Uses the Brent solver to find the roots of Int(p(x_in,y_in))-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param min double value that represents the minimum value
/// @param max double value that represents the maximum value
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
/// @param int_axis axis for the integration (0=x, 1=y)
double Polynomial2DFrac::solve_limitsInt(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &min, const double &max, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base, const int &int_axis){
Poly2DFracIntResidual res = Poly2DFracIntResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base, int_axis);
return Polynomial2D::solve_limits(&res, min, max);
} //TODO: Implement tests for this solver
/// Uses the Newton solver to find the roots of Int(p(x_in,y_in))-z_in
/// @param coefficients vector containing the ordered coefficients
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param guess double value that represents the start value
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
/// @param int_axis axis for the integration (0=x, 1=y)
double Polynomial2DFrac::solve_guessInt(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &guess, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base, const int &int_axis){
Poly2DFracIntResidual res = Poly2DFracIntResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base, int_axis);
return Polynomial2D::solve_guess(&res, guess);
} //TODO: Implement tests for this solver
/** Simple integrated centred(!) polynomial function generator divided by independent variable.
* We need to rewrite some of the functions in order to
* use central fit. Having a central temperature xbase
* allows for a better fit, but requires a different
* formulation of the fracInt function group. Other
* functions are not affected.
* Starts with only the first coefficient at x^0 */
//Helper functions to calculate binomial coefficients:
//http://rosettacode.org/wiki/Evaluate_binomial_coefficients#C.2B.2B
/// @param nValue integer value that represents the order of the factorial
double Polynomial2DFrac::factorial(const int &nValue){
double value = 1;
for(int i = 2; i <= nValue; i++) value = value * i;
return value;
}
/// @param nValue integer value that represents the upper part of the factorial
/// @param nValue2 integer value that represents the lower part of the factorial
double Polynomial2DFrac::binom(const int &nValue, const int &nValue2){
if(nValue2 == 1) return nValue*1.0;
return (factorial(nValue)) / (factorial(nValue2)*factorial((nValue - nValue2)));
}
///Helper function to calculate the D vector:
/// @param m integer value that represents order
/// @param x_in double value that represents the current input
/// @param x_base double value that represents the basis for the fit
Eigen::MatrixXd Polynomial2DFrac::fracIntCentralDvector(const int &m, const double &x_in, const double &x_base){
if (m<1) throw ValueError(format("%s (%d): You have to provide coefficients, a vector length of %d is not a valid. ",__FILE__,__LINE__,m));
Eigen::MatrixXd D = Eigen::MatrixXd::Zero(1,m);
double tmp;
// TODO: This can be optimized using the Horner scheme!
for (int j=0; j<m; j++){ // loop through row
tmp = pow(-1.0,j) * log(x_in) * pow(x_base,j);
for(int k=0; k<j; k++) { // internal loop for every entry
tmp += binom(j,k) * pow(-1.0,k) / (j-k) * pow(x_in,j-k) * pow(x_base,k);
}
D(0,j)=tmp;
}
return D;
}
///Indefinite integral of a centred polynomial divided by its independent variable
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input
/// @param x_base double value that represents the basis for the fit
double Polynomial2DFrac::fracIntCentral(const Eigen::MatrixXd &coefficients, const double &x_in, const double &x_base){
if (coefficients.rows() != 1) {
throw ValueError(format("%s (%d): You have a 2D coefficient matrix (%d,%d), please use the 2D functions. ",__FILE__,__LINE__,coefficients.rows(),coefficients.cols()));
}
int m = static_cast<int>(coefficients.cols());
Eigen::MatrixXd D = fracIntCentralDvector(m, x_in, x_base);
double result = 0;
for(int j=0; j<m; j++) {
result += coefficients(0,j) * D(0,j);
}
if (this->do_debug()) std::cout << "Running fracIntCentral(" << mat_to_string(coefficients) << ", " << vec_to_string(x_in) << ", " << vec_to_string(x_base) << "): " << result << std::endl;
return result;
}
Poly2DFracResidual::Poly2DFracResidual(Polynomial2DFrac &poly, const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base)
: Poly2DResidual(poly, coefficients, in, z_in, axis){
this->x_exp = x_exp;
this->y_exp = y_exp;
this->x_base = x_base;
this->y_base = y_base;
}
double Poly2DFracResidual::call(double target){
if (axis==iX) return poly.evaluate(coefficients,target,in,x_exp,y_exp,x_base,y_base)-z_in;
if (axis==iY) return poly.evaluate(coefficients,in,target,x_exp,y_exp,x_base,y_base)-z_in;
return _HUGE;
}
double Poly2DFracResidual::deriv(double target){
if (axis==iX) return poly.derivative(coefficients,target,in,axis,x_exp,y_exp,x_base,y_base);
if (axis==iY) return poly.derivative(coefficients,in,target,axis,x_exp,y_exp,x_base,y_base);
return _HUGE;
}
Poly2DFracIntResidual::Poly2DFracIntResidual(Polynomial2DFrac &poly, const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base, const int &int_axis)
: Poly2DFracResidual(poly, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base){
this->int_axis = int_axis;
}
double Poly2DFracIntResidual::call(double target){
if (axis==iX) return poly.integral(coefficients,target,in,int_axis,x_exp,y_exp,x_base,y_base)-z_in;
if (axis==iY) return poly.integral(coefficients,in,target,int_axis,x_exp,y_exp,x_base,y_base)-z_in;
return _HUGE;
}
double Poly2DFracIntResidual::deriv(double target){
if (axis==iX) return poly.evaluate(coefficients,target,in,x_exp,y_exp,x_base,y_base);
if (axis==iY) return poly.evaluate(coefficients,in,target,x_exp,y_exp,x_base,y_base);
return _HUGE;
}
}
#ifdef ENABLE_CATCH
#include <math.h>
#include <iostream>
#include "catch.hpp"
TEST_CASE("Internal consistency checks and example use cases for PolyMath.cpp","[PolyMath]")
{
bool PRINT = false;
std::string tmpStr;
/// Test case for "SylthermXLT" by "Dow Chemicals"
std::vector<double> cHeat;
cHeat.clear();
cHeat.push_back(+1.1562261074E+03);
cHeat.push_back(+2.0994549103E+00);
cHeat.push_back(+7.7175381057E-07);
cHeat.push_back(-3.7008444051E-20);
double deltaT = 0.1;
double Tmin = 273.15- 50;
double Tmax = 273.15+250;
double Tinc = 200;
std::vector<std::vector<double> > cHeat2D;
cHeat2D.push_back(cHeat);
cHeat2D.push_back(cHeat);
cHeat2D.push_back(cHeat);
Eigen::MatrixXd matrix2D = CoolProp::vec_to_eigen(cHeat2D);
Eigen::MatrixXd matrix2Dtmp;
std::vector<std::vector<double> > vec2Dtmp;
SECTION("Coefficient parsing") {
CoolProp::Polynomial2D poly;
CHECK_THROWS(poly.checkCoefficients(matrix2D,4,5));
CHECK( poly.checkCoefficients(matrix2D,3,4) );
}
SECTION("Coefficient operations") {
Eigen::MatrixXd matrix;
CoolProp::Polynomial2D poly;
CHECK_THROWS(poly.integrateCoeffs(matrix2D));
CHECK_NOTHROW(matrix = poly.integrateCoeffs(matrix2D, 0));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_NOTHROW(matrix = poly.integrateCoeffs(matrix2D, 1));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_THROWS(poly.deriveCoeffs(matrix2D));
CHECK_NOTHROW(matrix = poly.deriveCoeffs(matrix2D, 0));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_NOTHROW(matrix = poly.deriveCoeffs(matrix2D, 1));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
}
SECTION("Evaluation and test values"){
Eigen::MatrixXd matrix = CoolProp::vec_to_eigen(cHeat);
CoolProp::Polynomial2D poly;
double acc = 0.0001;
double T = 273.15+50;
double c = poly.evaluate(matrix, T, 0.0);
double d = 1834.746;
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
c = 2.0;
c = poly.solve(matrix, 0.0, d, 0)[0];
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
CHECK( check_abs(c,T,acc) );
}
c = 2.0;
c = poly.solve_limits(matrix, 0.0, d, -50, 750, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
CHECK( check_abs(c,T,acc) );
}
c = 2.0;
c = poly.solve_guess(matrix, 0.0, d, 350, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
CHECK( check_abs(c,T,acc) );
}
// T = 0.0;
// solve.setGuess(75+273.15);
// T = solve.polyval(cHeat,c);
// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
// printf("From object: T = %3.3f \t K \n",T);
//
// T = 0.0;
// solve.setLimits(273.15+10,273.15+100);
// T = solve.polyval(cHeat,c);
// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
// printf("From object: T = %3.3f \t K \n",T);
}
SECTION("Integration and derivation tests") {
CoolProp::Polynomial2D poly;
Eigen::MatrixXd matrix(matrix2D);
Eigen::MatrixXd matrixInt = poly.integrateCoeffs(matrix, 1);
Eigen::MatrixXd matrixDer = poly.deriveCoeffs(matrix, 1);
Eigen::MatrixXd matrixInt2 = poly.integrateCoeffs(matrix, 1, 2);
Eigen::MatrixXd matrixDer2 = poly.deriveCoeffs(matrix, 1, 2);
CHECK_THROWS( poly.evaluate(matrix,0.0) );
double x = 0.3, y = 255.3, val1, val2, val3, val4;
//CHECK( std::abs( polyInt.derivative(x,y,0)-poly2D.evaluate(x,y) ) <= 1e-10 );
std::string tmpStr;
double acc = 0.001;
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.evaluate(matrix, x, T-deltaT);
val2 = poly.evaluate(matrix, x, T+deltaT);
val3 = (val2-val1)/2/deltaT;
val4 = poly.evaluate(matrixDer, x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrixDer);
CAPTURE(tmpStr);
CHECK( check_abs(val3,val4,acc) );
}
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.evaluate(matrixDer, x, T-deltaT);
val2 = poly.evaluate(matrixDer, x, T+deltaT);
val3 = (val2-val1)/2/deltaT;
val4 = poly.evaluate(matrixDer2, x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrixDer);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrixDer2);
CAPTURE(tmpStr);
CHECK( check_abs(val3,val4,acc) );
}
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.evaluate(matrixInt, x, T-deltaT);
val2 = poly.evaluate(matrixInt, x, T+deltaT);
val3 = (val2-val1)/2/deltaT;
val4 = poly.evaluate(matrix, x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrixInt);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(val3,val4,acc) );
}
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.evaluate(matrixInt2, x, T-deltaT);
val2 = poly.evaluate(matrixInt2, x, T+deltaT);
val3 = (val2-val1)/2/deltaT;
val4 = poly.evaluate(matrixInt, x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrixInt2);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrixInt);
CAPTURE(tmpStr);
CHECK( check_abs(val3,val4,acc) );
}
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.evaluate(matrix, x, T);
val2 = poly.derivative(matrixInt, x, T, 1);
CAPTURE(T);
CAPTURE(val1);
CAPTURE(val2);
CHECK( check_abs(val1,val2,acc) );
}
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.derivative(matrix, x, T, 1);
val2 = poly.evaluate(matrixDer, x, T);
CAPTURE(T);
CAPTURE(val1);
CAPTURE(val2);
CHECK( check_abs(val1,val2,acc) );
}
}
SECTION("Testing Polynomial2DFrac"){
Eigen::MatrixXd matrix = CoolProp::vec_to_eigen(cHeat);
CoolProp::Polynomial2D poly;
CoolProp::Polynomial2DFrac frac;
double acc = 0.0001;
double T = 273.15+50;
double a,b;
double c = poly.evaluate(matrix, T, 0.0);
double d = frac.evaluate(matrix, T, 0.0, 0, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
c = poly.evaluate(matrix, T, 0.0)/T/T;
d = frac.evaluate(matrix, T, 0.0, -2, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
matrix = CoolProp::vec_to_eigen(cHeat2D);
double y = 0.1;
c = poly.evaluate(matrix, T, y)/T/T;
d = frac.evaluate(matrix, T, y, -2, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
c = poly.evaluate(matrix, T, y)/y/y;
d = frac.evaluate(matrix, T, y, 0, -2);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
c = poly.evaluate(matrix, T, y)/T/T/y/y;
d = frac.evaluate(matrix, T, y, -2, -2);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
c = poly.evaluate(matrix, T, y)/T/T*y*y;
d = frac.evaluate(matrix, T, y, -2, 2);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
matrix = CoolProp::vec_to_eigen(cHeat);
T = 273.15+50;
c = 145.59157247249246;
d = frac.integral(matrix, T, 0.0, 0, -1, 0) - frac.integral(matrix, 273.15+25, 0.0, 0, -1, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
T = 423.15;
c = 3460.895272;
d = frac.integral(matrix, T, 0.0, 0, -1, 0, 348.15, 0.0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
deltaT = 0.01;
for (T = Tmin; T<Tmax; T+=Tinc) {
a = poly.evaluate(matrix, T-deltaT, y);
b = poly.evaluate(matrix, T+deltaT, y);
c = (b-a)/2.0/deltaT;
d = frac.derivative(matrix, T, y, 0, 0, 0);
CAPTURE(a);
CAPTURE(b);
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
T = 273.15+150;
c = -2.100108045;
d = frac.derivative(matrix, T, 0.0, 0, 0, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
c = -0.006456574589;
d = frac.derivative(matrix, T, 0.0, 0, -1, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
c = frac.evaluate(matrix, T, 0.0, 2, 0);
d = frac.solve(matrix, 0.0, c, 0, 2, 0)[0];
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(T,d,acc) );
}
c = frac.evaluate(matrix, T, 0.0, 0, 0);
d = frac.solve(matrix, 0.0, c, 0, 0, 0)[0];
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(T,d,acc) );
}
c = frac.evaluate(matrix, T, 0.0, -1, 0);
CHECK_THROWS(d = frac.solve(matrix, 0.0, c, 0, -1, 0)[0]);
// {
// CAPTURE(T);
// CAPTURE(c);
// CAPTURE(d);
// tmpStr = CoolProp::mat_to_string(matrix);
// CAPTURE(tmpStr);
// CHECK( check_abs(T,d,acc) );
// }
d = frac.solve_limits(matrix, 0.0, c, T-10, T+10, 0, -1, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(T,d,acc) );
}
d = frac.solve_guess(matrix, 0.0, c, T-10, 0, -1, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(T,d,acc) );
}
c = -0.00004224550082;
d = frac.derivative(matrix, T, 0.0, 0, -2, 0);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
c = frac.evaluate(matrix, T, 0.0, 0, 0, 0.0, 0.0);
d = frac.solve(matrix, 0.0, c, 0, 0, 0, 0.0, 0.0)[0];
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(Eigen::MatrixXd(frac.solve(matrix, 0.0, c, 0, 0, 0, 250, 0.0)));
CAPTURE(tmpStr);
CHECK( check_abs(T,d,acc) );
}
}
}
#endif /* ENABLE_CATCH */