[go: up one dir, main page]

Menu

[r34]: / common / sp1.f90  Maximize  Restore  History

Download this file

155 lines (148 with data), 3.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
! sp1 Geoff's brain production
! Copyright (C) 1999,2010 Gauthier Delerce
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 2, or (at your option)
! any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software Foundation,
! Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
!
! Gauthier Delerce <gauthier@delerce.fr>
subroutine sp1(a,x,y,n,ro,s,t,r,b,aa,c1,c2,c3,max)
implicit real(8) (a-g,o-z)
real x(n),y(n),a(n)
real(8) s(n),t(3),ro
real(8) r(max*(max-1)/2),b(max),aa((max-3)*(max-2)/2)
real(8) c1(max),c2(max),c3(max)
!*----------- computation of kernel matrix K (I,J) I<J -------------------
! write(*,*) ' DEBUT SP1'
! write(*,*) 'max, aa size,n3',max,(max-3)*(max-2)/2,n-3
!c pause
! print*,111,a
! print*,''
! print*,x;print*,''
! print*,y;print*,''
! print*,n;print*,''
! print*,ro;print*,''
! print*,s;print*,''
! print*,t;print*,''
! print*,r;print*,''
! print*,b;print*,''
! print*,aa;print*,''
! print*,c1;print*,''
! print*,c2;print*,''
! print*,c3;print*,''
! print*,max;print*,''
n3=n-3
do j=2,n
jm1=j-1
ij=(jm1*(j-2))/2
do i=1,jm1
dx=dble(x(i)-x(j))
dy=dble(y(i)-y(j))
a3=dx*dx+dy*dy
r(ij+i)=a3*dlog(a3)
!c write(*,*)i,j,ij+i
!c pause
end do
end do
!c pause
!*------------------- computation of C1,C2,C3(I) --------------------------
v1=dble(y(3)-y(1))
v4=dble(x(2)-x(1))
v2=dble(x(1)-x(3))
v3=dble(y(1)-y(2))
a1=v1*v4-v2*v3
v1=v1/a1
v2=v2/a1
v3=v3/a1
v4=v4/a1
do i=1,n3
ip3=i+3
a1=dble(x(1)-x(ip3))
a2=dble(y(1)-y(ip3))
c3(i)=v3*a1+v4*a2
c2(i)=v1*a1+v2*a2
c1(i)=-(1.d0+c2(i)+c3(i))
end do
!c pause
!*-------------------- computation of AA(I,J) I <= J ----------------------
do i=1,n3
i1=(i*(i+1))/2
ij=i1+i+2
a1=c2(i)*r(1)+c3(i)*r(2)+r(ij)
a2=c3(i)*r(3)+r(ij+1)
a3=ro*(c1(i)*c1(i)+c2(i)*c2(i)+c3(i)*c3(i)+1.d0)
aa(i1)=2.d0*(c1(i)*a1+c2(i)*a2+c3(i)*r(ij+2))+a3
end do
do j=2,n3
jm1=j-1
ij=(j*(j+3)+4)/2
it=(j*jm1)/2
do i=1,jm1
i1=it+i
j1=(i*(i+3)+4)/2
a1=c2(j)*r(1)+c3(j)*r(2)+r(ij)
a2=c1(j)*r(1)+c3(j)*r(3)+r(ij+1)
a3=c1(j)*r(2)+c2(j)*r(3)+r(ij+2)
a4=c1(j)*r(j1)+c2(j)*r(j1+1)+c3(j)*r(j1+2)+r(ij+i+2)
a5=ro*(c1(i)*c1(j)+c2(i)*c2(j)+c3(i)*c3(j))
aa(i1)=c1(i)*a1+c2(i)*a2+c3(i)*a3+a4+a5
!c write(*,*) aa(i1)
end do
end do
!c pause
!*------------------ Cholesky decomposition -------------------------------
! print*,1111
call ludecp(aa,aa,n3,d1,d2,ier,(max-3)*(max-2)/2)
!c pause
!*---------- forward/back substitution for A ------------------------------
! print*,2222
do i=1,n3
b(i)=c1(i)*a(1)+c2(i)*a(2)+c3(i)*a(3)+a(i+3)
end do
call luelmp(aa,b,n3,b,(max-3)*(max-2)/2)
do i=4,n
s(i)=b(i-3)
end do
! print*,3333
!*-------------------- compute A, spline coefficients ---------------------
a1=0.d0
a2=0.d0
a3=0.d0
do i=1,n3
ip3=i+3
a1=a1+c1(i)*s(ip3)
a2=a2+c2(i)*s(ip3)
a3=a3+c3(i)*s(ip3)
end do
s(1)=a1
s(2)=a2
s(3)=a3
a1=s(2)*r(1)+s(3)*r(2)+ro*s(1)
a2=s(1)*r(1)+s(3)*r(3)+ro*s(2)
a3=s(1)*r(2)+s(2)*r(3)+ro*s(3)
do i=4,n
i1=(i*(i-3)+4)/2
a1=a1+s(i)*r(i1)
a2=a2+s(i)*r(i1+1)
a3=a3+s(i)*r(i1+2)
end do
a1=a(1)-a1
a2=a(2)-(a2+a1)
a3=a(3)-(a3+a1)
t(1)=v1*a2+v3*a3
t(2)=v2*a2+v4*a3
t(3)=a1-(x(1)*t(1)+y(1)*t(2))
! print*,7777
!* ----------- return with spline coefficients in S & T ------------------
return
end