[go: up one dir, main page]

Menu

[8286ad]: / body / Tire.cpp  Maximize  Restore  History

Download this file

267 lines (233 with data), 10.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// The tire for a wheel.
//
// Copyright (C) 2001-2019 Sam Varner
//
// This file is part of Vamos Automotive Simulator.
//
// Vamos is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Vamos is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Vamos. If not, see <http://www.gnu.org/licenses/>.
#include "Tire.hpp"
#include "../geometry/Constants.hpp"
#include "../geometry/Numeric.hpp"
#include "../geometry/Parameter.hpp"
#include "../geometry/Three_Matrix.hpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
using namespace Vamos_Body;
using namespace Vamos_Geometry;
namespace
{
const double epsilon = 1.0e-12;
const double ambient_temperature = 300.0;
const double initial_temperature = 345.0;
// The magic equation. Slip is a percentage for longitudinal force, an angle in degrees
// for transverse force and aligning torque.
double pacejka_equation(double slip, double B, double C, double D, double E, double Sh, double Sv)
{
return D * sin(C * atan(B * (1.0 - E) * (slip + Sh) + E * atan(B * (slip + Sh)))) + Sv;
}
// Return the slip value for which the Pacejka function is maximized.
double peak_slip(double B, double C, double E, double Sh, double guess)
{
// The Pacejka function is maximized when this function is zero..
auto function = [](double x, double B, double C, double E, double Sh) {
return B * (1.0 - E) * (x + Sh) + E * atan(B * (x + Sh)) - tan(half_pi / C);
};
auto derivative = [](double x, double B, double C, double E, double Sh) {
return B * (1.0 - E) + E * B / (1.0 + B * B * (x + Sh) * (x + Sh));
};
// Newton's method. The shape of the function makes it converge quickly.
double x = guess;
double y;
for (int i = 0; i < 10; i++)
{
y = function(x, B, C, E, Sh);
if (std::abs(y) < 0.001)
return x;
x -= y / derivative(x, B, C, E, Sh);
}
return guess;
}
std::pair<double, double> get_slip(double patch_speed, const Three_Vector& hub_velocity)
{
// Put a lower limit on the denominator to keep sigma and tan_alpha from getting out
// of hand at low speeds.
double denom = std::max(std::abs(hub_velocity.x), 3.0);
return std::make_pair(100.0 * (patch_speed - hub_velocity.x) / denom,
-rad_to_deg(atan2(hub_velocity.y, denom)));
}
} // namespace
//----------------------------------------------------------------------------------------
Tire_Friction::Tire_Friction(const V_Long& long_parameters,
const V_Trans& trans_parameters,
const V_Align& align_parameters)
: m_longitudital_parameters(long_parameters),
m_transverse_parameters(trans_parameters),
m_aligning_parameters(align_parameters)
{}
Three_Vector Tire_Friction::friction_forces(double normal_force, double friction_factor,
const Three_Vector& hub_velocity, double patch_speed,
double current_camber)
{
double Fz = normal_force / 1000.0;
double Fz2 = square(Fz);
// Evaluate the longitudinal parameters.
const auto& b = m_longitudital_parameters;
double Cx = b[0];
double Dx = friction_factor * (b[1] * Fz2 + b[2] * Fz);
double Bx = (b[3] * Fz2 + b[4] * Fz) * exp(-b[5] * Fz) / (Cx * Dx);
double Ex = b[6] * Fz2 + b[7] * Fz + b[8];
double Shx = b[9] * Fz + b[10];
// Evaluate the transverse parameters.
const auto& a = m_transverse_parameters;
double gamma = rad_to_deg(current_camber);
double Cy = a[0];
double Dy = friction_factor * (a[1] * Fz2 + a[2] * Fz);
double By = a[3] * sin(2.0 * atan(Fz / a[4])) * (1.0 - a[5] * std::abs(gamma)) / (Cy * Dy);
double Ey = a[6] * Fz + a[7];
double Shy = a[8] * gamma + a[9] * Fz + a[10];
double Svy = (a[11] * Fz + a[12]) * gamma * Fz + a[13] * Fz + a[14];
// Evaluate the aligning parameters.
const auto& c = m_aligning_parameters;
double Cz = c[0];
double Dz = friction_factor * (c[1] * Fz2 + c[2] * Fz);
double Bz = (c[3] * Fz2 + c[4] * Fz) * (1.0 - c[6] * std::abs(gamma)) * exp(-c[5] * Fz)
/ (Cz * Dz);
double Ez = (c[7] * Fz2 + c[8] * Fz + c[9]) * (1.0 - c[10] * std::abs(gamma));
double Shz = c[11] * gamma + c[12] * Fz + c[13];
double Svz = (c[14] * Fz2 + c[15] * Fz) * gamma + c[16] * Fz + c[17];
// Longitudinal traction is not independent of transverse traction. If the tire is
// sliding, it's sliding for both. Combine the slip ratios by normalizing relative to
// the peak of the force function.
auto [sigma, alpha] = get_slip(patch_speed, hub_velocity);
m_peak_slip_ratio = peak_slip(Bx, Cx, Ex, Shx, m_peak_slip_ratio);
Three_Vector slip;
if (m_peak_slip_ratio > epsilon)
slip.x = sigma / m_peak_slip_ratio;
m_peak_slip_angle = peak_slip(By, Cy, Ey, Shy, m_peak_slip_angle);
if (m_peak_slip_angle > epsilon)
slip.y = alpha / m_peak_slip_angle;
m_peak_aligning_angle = peak_slip(Bz, Cz, Ez, Shz, m_peak_aligning_angle);
if (m_peak_aligning_angle > epsilon)
slip.z = alpha / m_peak_aligning_angle;
double slip_xy = Three_Vector(slip.x, slip.y, 0.0).magnitude();
double Fx = pacejka_equation(sign(slip.x) * slip_xy
* m_peak_slip_ratio, Bx, Cx, Dx, Ex, Shx, 0.0);
double Fy = pacejka_equation(sign(slip.y) * slip_xy
* m_peak_slip_angle, By, Cy, Dy, Ey, Shy, Svy);
double slip_xz = Three_Vector(slip.x, 0.0, slip.z).magnitude();
double Mz = pacejka_equation(slip_xz * m_peak_aligning_angle, Bz, Cz, Dz, Ez, Shz, Svz);
if (slip_xy > epsilon)
{
Fx *= std::abs(slip.x) / slip_xy;
Fy *= std::abs(slip.y) / slip_xy;
}
if (slip_xz > epsilon)
Mz *= slip.z / slip_xz;
m_slide = hub_velocity.magnitude() > 0.1 && normal_force > 0.0 ? slip_xy : 0.0;
// Construct the friction vector. The z-component is the aligning torque.
return Three_Vector(Fx, Fy, Mz);
}
//----------------------------------------------------------------------------------------
Tire::Tire(double radius, double rolling_resistance_1, double rolling_resistance_2,
const Tire_Friction& friction, double hardness, double inertia)
: m_radius(radius),
m_rolling_resistance({rolling_resistance_1, rolling_resistance_2}),
m_tire_friction(friction),
m_hardness(hardness),
m_rotational_inertia(inertia),
m_temperature(initial_temperature)
{}
void Tire::input(const Three_Vector& velocity, double patch_speed,
const Three_Vector& normal_force, double camber, double torque, bool is_locked,
const Material& surface_material)
{
m_normal_force = normal_force.magnitude();
// m_force is the force of the road on the tire. The force of the tire on the body
// must be calculated. The transverse component won't change, but the longitudinal
// component will be affected by the tire's ability to move in that direction, and by
// applied foces (acceleration and braking).
// Skip this step if we don't have a surface yet.
if (surface_material.type() == Material::UNKNOWN)
return;
if (m_normal_force <= 0.0)
{
reset();
return;
}
// Get the friction force (components 0 and 1) and the aligning torque (component 2).
double grip = std::max(m_temperature / 380.0 - m_wear, 0.3);
m_surface_friction = surface_material.friction_factor();
auto friction_force = m_tire_friction.friction_forces(
m_normal_force * grip, m_surface_friction, velocity, patch_speed, camber);
// the frictional force opposing the motion of the contact patch.
m_force = Three_Vector(friction_force.x, friction_force.y, 0.0);
// Apply the reaction torque from acceleration or braking. In normal conditions this
// torque comes from friction. However, the frictional force can sometimes be large
// when no acceleration or braking is applied. For instance, when you run into a
// gravel trap. In any case, the reaction torque should never be larger than the
// applied accelerating or braking torque.
double reaction = force().x * m_radius;
if ((torque > 0.0 && reaction > torque) || (torque < 0.0 && reaction < torque))
reaction = torque;
m_torque = Three_Vector(0.0, -reaction, friction_force.z);
if (!is_locked)
{
double rolling_1 = m_rolling_resistance[0];
if (patch_speed < 0.0)
rolling_1 *= -1.0;
// Include constant and quadratic rolling resistance.
double rolling = surface_material.rolling_resistance_factor()
* (rolling_1 + m_rolling_resistance[1] * square(patch_speed));
torque -= (force().x + rolling) * m_radius;
}
// Add the suface drag.
m_force = force()
- surface_material.drag_factor() * Three_Vector(velocity.x, velocity.y, 0.0);
}
void Tire::propagate(double time)
{
// My made-up model of tire heating and wear.
static const double stress_heating = 2e-4;
static const double abrasion_heating = 1e-1;
static const double wear = 1e-8;
static const double cooling = 5e-3;
const double dT = m_temperature - ambient_temperature;
if (slide() > 0.0)
{
// Forces applied through the tire flex, stretch, and compress the rubber
// heating it up. Slipping results in heating due to sliding friction.
const double F = (force() + m_normal_force * Three_Vector::Z).magnitude();
const double friction = slide() * m_surface_friction;
const double heat = time * (stress_heating * F / m_hardness + abrasion_heating * friction);
m_temperature += heat;
// Slipping wears the tire through abrasion. The tire wears more quickly
// at high temperature.
m_wear += time * wear * friction * pow(dT, 2);
}
// Cooling is proportional to difference from ambient.
m_temperature -= time * cooling * dT;
}
Three_Vector Tire::contact_position() const
{
return Three_Vector::Z * -m_radius;
}
void Tire::reset()
{
m_force.zero();
m_torque.zero();
m_temperature = initial_temperature;
m_wear = 0.0;
}