[go: up one dir, main page]

Menu

[9202b6]: / body / Tire.cc  Maximize  Restore  History

Download this file

376 lines (331 with data), 12.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
// Tire.cc - the tire for a wheel.
//
// Copyright (C) 2001--2004 Sam Varner
//
// This file is part of Vamos Automotive Simulator.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "Tire.h"
#include "../geometry/Conversions.h"
#include "../geometry/Numeric.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
using namespace Vamos_Body;
using namespace Vamos_Geometry;
const double epsilon = 1.0e-12;
// The magic equation. Slip is a percentage for longitudinal force,
// an angle in degrees for transverse force and aligning torque.
static inline
double pacejka_equation (double slip,
double B, double C, double D, double E,
double Sh, double Sv)
{
return D * sin (C * atan (B * (1.0 - E) * (slip + Sh)
+ E * atan (B * (slip + Sh)))) + Sv;
}
// Return the slip value for which the Pacejka function is maximized.
static
double peak_slip (double B, double C, double E, double Sh, double guess)
{
struct Slip
{
// The Pacejka function is maximized when this function is zero...
static inline
double function (double x, double B, double C, double E, double Sh)
{
return B*(1.0 - E)*(x + Sh) + E*atan (B*(x + Sh)) - tan (pi/(2.0*C));
}
static inline
double derivative (double x, double B, double C, double E, double Sh)
{
return B*(1.0 - E) + E*B/(1.0 + B*B*(x + Sh)*(x + Sh));
}
};
// Newton's method. The shape of the function makes it converge
// quickly.
double x = guess;
double y;
for (int i = 0; i < 10; i++)
{
y = Slip::function (x, B, C, E, Sh);
if (std::abs (y) < 0.001)
return x;
x -= y / Slip::derivative (x, B, C, E, Sh);
}
// std::cerr << "peak_slip() failed x=" << x << " y=" << y <<
// " B=" << B << " C=" << C << " E=" << E << " Sh=" << Sh << std::endl;
return guess;
}
//* Class Tire_Friction
//** Constructor
Tire_Friction::Tire_Friction (const std::vector <double>& long_parameters,
const std::vector <double>& trans_parameters,
const std::vector <double>& align_parameters) :
m_longitudital_parameters (long_parameters),
m_transverse_parameters (trans_parameters),
m_aligning_parameters (align_parameters),
m_peak_slip (0.0),
m_peak_slip_angle (0.0),
m_peak_aligning_angle (0.0),
m_slide (0.0)
{
assert (m_longitudital_parameters.size () == 11);
assert (m_transverse_parameters.size () == 15);
assert (m_aligning_parameters.size () == 18);
}
// Return the longitudinal (first) and transverse (second) slip ratios.
void
Tire_Friction::slip (double patch_speed, const Three_Vector& hub_velocity,
double* sigma, double* alpha)
{
// Leave the slip parameters at zero if the difference between the
// patch speed and the hub velocity is very small.
*sigma = 0.0;
*alpha = 0.0;
if (std::abs (hub_velocity.x - patch_speed) > 1.0e-4)
{
// Put a lower limit on the denominator to keep sigma and
// tan_alpha from getting out of hand at low speeds.
double denom = std::max (std::abs (hub_velocity.x), 3.0);
*sigma = 100.0 * (patch_speed - hub_velocity.x) / denom;
*alpha = -rad_to_deg (atan2 (hub_velocity.y, denom));
}
}
// Return the friction vector calculated from the magic formula.
// HUB_VELOCITY is the velocity vector of the wheel's reference
// frame. PATCH_SPEED is the rearward speed of the contact pacth with
// respect to the wheel's frame.
Three_Vector
Tire_Friction::friction_forces (double normal_force, double friction_factor,
const Three_Vector& hub_velocity,
double patch_speed, double current_camber)
{
double Fz = normal_force / 1000.0;
double Fz_squared = Fz * Fz;
// Evaluate the longitudinal parameters.
const std::vector <double>& b = m_longitudital_parameters;
double Cx = b [0];
double Dx = friction_factor * (b [1] * Fz_squared + b [2] * Fz);
double Bx = (b [3] * Fz_squared + b [4] * Fz) * exp (-b [5] * Fz) / (Cx * Dx);
double Ex = b [6] * Fz_squared + b [7] * Fz + b [8];
double Shx = b [9] * Fz + b [10];
// Evaluate the transverse parameters.
const std::vector <double>& a = m_transverse_parameters;
double gamma = rad_to_deg (current_camber);
double Cy = a [0];
double Dy = friction_factor * (a [1] * Fz_squared + a [2] * Fz);
double By = a [3] * sin (2.0 * atan (Fz / a [4]))
* (1.0 - a [5] * std::abs (gamma)) / (Cy * Dy);
double Ey = a [6] * Fz + a [7];
double Shy = a [8] * gamma + a [9] * Fz + a [10];
double Svy = (a [11] * Fz + a [12]) * gamma * Fz + a [13] * Fz + a [14];
// Evaluate the aligning parameters.
const std::vector <double>& c = m_aligning_parameters;
double Cz = c [0];
double Dz = friction_factor * (c [1] * Fz_squared + c [2] * Fz);
double Bz = (c [3] * Fz_squared + c [4] * Fz)
* (1.0 - c [6] * std::abs (gamma))
* exp (-c [5] * Fz) / (Cz * Dz);
double Ez = (c [7] * Fz_squared + c [8] * Fz + c [9])
* (1.0 - c [10] * std::abs (gamma));
double Shz = c [11] * gamma + c [12] * Fz + c [13];
double Svz = (c [14] * Fz_squared + c [15] * Fz) * gamma + c [16] * Fz
+ c [17];
double sigma;
double alpha;
slip (patch_speed, hub_velocity, &sigma, &alpha);
m_peak_slip = peak_slip (Bx, Cx, Ex, Shx, m_peak_slip);
Three_Vector slip;
if (m_peak_slip > epsilon)
slip.x = sigma / m_peak_slip;
m_peak_slip_angle = peak_slip (By, Cy, Ey, Shy, m_peak_slip_angle);
if (m_peak_slip_angle > epsilon)
slip.y = alpha / m_peak_slip_angle;
m_peak_aligning_angle = peak_slip (Bz, Cz, Ez, Shz, m_peak_aligning_angle);
if (m_peak_aligning_angle > epsilon)
slip.z = alpha / m_peak_aligning_angle;
double slip_xy = Three_Vector (slip.x, slip.y, 0.0).magnitude ();
double Fx = pacejka_equation (sign (slip.x) * slip_xy * m_peak_slip,
Bx, Cx, Dx, Ex, Shx, 0.0);
double Fy = pacejka_equation (sign (slip.y) * slip_xy * m_peak_slip_angle,
By, Cy, Dy, Ey, Shy, Svy);
double slip_xz = Three_Vector (slip.x, 0.0, slip.z).magnitude ();
double Mz = pacejka_equation (slip_xz * m_peak_aligning_angle,
Bz, Cz, Dz, Ez, Shz, Svz);
if (slip_xy > epsilon)
{
Fx *= std::abs (slip.x) / slip_xy;
Fy *= std::abs (slip.y) / slip_xy;
}
if (slip_xz > epsilon)
Mz *= slip.z / slip_xz;
// Set the volume of the tire squeal sound.
m_slide = (hub_velocity.magnitude () < 0.1) ? 0.0 : std::min (slip_xy, 1.0);
// Construct the friction vector. The z-component is the aligning
// torque.
return Three_Vector (Fx, Fy, Mz);
}
//* Class Tire
//** Constructor
Vamos_Body::
Tire::Tire (double radius,
double rolling_resistance_1,
double rolling_resistance_2,
const Tire_Friction& friction,
double inertia,
const Frame* parent)
: Particle (0.0, parent),
m_radius (radius),
m_rolling_resistance_1 (rolling_resistance_1),
m_rolling_resistance_2 (rolling_resistance_2),
m_tire_friction (friction),
m_inertia (inertia),
m_rotational_speed (0.0),
m_last_rotational_speed (0.0),
m_slide (0.0),
m_velocity (0.0, 0.0, 0.0),
m_normal_angular_velocity (0.0),
m_normal_force (0.0),
m_camber (0.0),
m_applied_torque (0.0),
m_is_locked (false)
{
}
// Called by the wheel to update the tire.
void
Tire::input (const Three_Vector& velocity,
double normal_angular_velocity,
const Three_Vector& normal_force,
double camber,
double torque,
bool is_locked,
const Material& surface_material)
{
orient_frame_with_unit_vector (normal_force.unit ());
m_velocity = rotate_from_parent (velocity);
m_normal_angular_velocity = normal_angular_velocity;
m_normal_force = normal_force.magnitude ();
m_camber = camber;
m_applied_torque = torque;
m_is_locked = is_locked;
m_surface_material = surface_material;
}
// Orient the tire's z-axis with the normal force.
void
Tire::orient_frame_with_unit_vector (const Three_Vector& normal_unit_vector)
{
Three_Vector rotation_axis =
Three_Vector (-normal_unit_vector.y, normal_unit_vector.x, 0.0);
double length = sqrt (normal_unit_vector.x * normal_unit_vector.x
+ normal_unit_vector.y * normal_unit_vector.y);
double rotation_angle = asin (length);
set_orientation (Three_Matrix ());
rotate (rotation_axis.unit () * rotation_angle);
}
void
Tire::find_forces ()
{
// m_force is the force of the road on the tire. The force of the
// tire on the body must be calculated. The transverse component
// won't change, but the longitudial component will be affected by
// the tire's ability to move in that direction, and by applied
// foces (acceleration and braking).
// Skip this step if we don't have a surface yet.
if (m_surface_material.type () == Material::UNKNOWN)
return;
m_slide = 0.0;
if (m_normal_force <= 0.0)
{
Particle::reset ();
return;
}
// Get the friction force (components 0 and 1) and the aligning
// torque (component 2).
Three_Vector friction_force = m_tire_friction.
friction_forces (m_normal_force, m_surface_material.friction_factor (),
m_velocity, speed(), m_camber);
// the frictional force opposing the motion of the contact patch.
set_force (Three_Vector (friction_force.x, friction_force.y, 0.0));
// Apply the reaction torque from acceleration or braking. In
// normal conditions this torque comes from friction. However, the
// frictional force can sometimes be large when no acceleration or
// braking is applied. For instance, when you run into a gravel
// trap. In any case, the reaction torque should never be larger
// than the applied accelerating or braking torque.
double reaction = force ().x * m_radius;
if (((m_applied_torque > 0.0) && (reaction > m_applied_torque))
|| ((m_applied_torque < 0.0) && (reaction < m_applied_torque)))
{
reaction = m_applied_torque;
}
set_torque (Three_Vector (0.0, reaction, friction_force.z));
if (!m_is_locked)
{
double rolling_1 = m_rolling_resistance_1;
if (speed () < 0.0)
rolling_1 *= -1.0;
// Include constant and quadratic rolling resistance.
double rolling = m_surface_material.rolling_resistance_factor ()
* (rolling_1 + m_rolling_resistance_2 * speed () * speed ());
m_applied_torque -= (force ().x + rolling) * m_radius;
}
// Add the suface drag.
set_force (force ()
- m_surface_material.drag_factor ()
* Three_Vector (m_velocity.x, m_velocity.y, 0.0));
m_slide = m_tire_friction.slide ();
}
// Advance this suspension component forward in time by TIME.
void
Tire::propagate (double time)
{
m_last_rotational_speed = m_rotational_speed;
if (m_is_locked)
{
// This causes speed() to return 0.0.
m_rotational_speed = 0.0;
}
else
{
m_rotational_speed += m_applied_torque * time / m_inertia;
}
}
void
Tire::rewind ()
{
m_rotational_speed = m_last_rotational_speed;
}
// Fill in the longitudinal (sigma) and transverse (alpha) slip ratios.
void
Tire::slip (double* sigma, double* alpha) const
{
m_tire_friction.slip (speed (), m_velocity, sigma, alpha);
}
// Return the position of the contact patch in the wheel's coordinate
// system.
Three_Vector
Tire::contact_position () const
{
return Three_Vector (0.0, 0.0, -m_radius);
}
// Set the tire to its initial conditions.
void
Tire::reset ()
{
Particle::reset ();
m_rotational_speed = 0.0;
}