Alternatives to Chroma

Compare Chroma alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Chroma in 2025. Compare features, ratings, user reviews, pricing, and more from Chroma competitors and alternatives in order to make an informed decision for your business.

  • 1
    DataHub

    DataHub

    DataHub

    DataHub Cloud is an event-driven AI & Data Context Platform that uses active metadata for real-time visibility across your entire data ecosystem. Unlike traditional data catalogs that provide outdated snapshots, DataHub Cloud instantly propagates changes, automatically enforces policies, and connects every data source across platforms with 100+ pre-built connectors. Built on an open source foundation with a thriving community of 13,000+ members, DataHub gives you unmatched flexibility to customize and extend without vendor lock-in. DataHub Cloud is a modern metadata platform with REST and GraphQL APIs that optimize performance for complex queries, essential for AI-ready data management and ML lifecycle support.
  • 2
    MongoDB Atlas
    The most innovative cloud database service on the market, with unmatched data distribution and mobility across AWS, Azure, and Google Cloud, built-in automation for resource and workload optimization, and so much more. MongoDB Atlas is the global cloud database service for modern applications. Deploy fully managed MongoDB across AWS, Google Cloud, and Azure with best-in-class automation and proven practices that guarantee availability, scalability, and compliance with the most demanding data security and privacy standards. The best way to deploy, run, and scale MongoDB in the cloud. MongoDB Atlas offers built-in security controls for all your data. Enable enterprise-grade features to integrate with your existing security protocols and compliance standards. With MongoDB Atlas, your data is protected with preconfigured security features for authentication, authorization, encryption, and more.
  • 3
    Pinecone

    Pinecone

    Pinecone

    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles. Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval. Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results. Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
  • 4
    Qdrant

    Qdrant

    Qdrant

    Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more! Provides the OpenAPI v3 specification to generate a client library in almost any programming language. Alternatively utilise ready-made client for Python or other programming languages with additional functionality. Implement a unique custom modification of the HNSW algorithm for Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results. Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values.
  • 5
    Zilliz Cloud
    Zilliz Cloud is a fully managed vector database based on the popular open-source Milvus. Zilliz Cloud helps to unlock high-performance similarity searches with no previous experience or extra effort needed for infrastructure management. It is ultra-fast and enables 10x faster vector retrieval, a feat unparalleled by any other vector database management system. Zilliz includes support for multiple vector search indexes, built-in filtering, and complete data encryption in transit, a requirement for enterprise-grade applications. Zilliz is a cost-effective way to build similarity search, recommender systems, and anomaly detection into applications to keep that competitive edge.
  • 6
    Azure AI Search
    Deliver high-quality responses with a vector database built for advanced retrieval augmented generation (RAG) and modern search. Focus on exponential growth with an enterprise-ready vector database that comes with security, compliance, and responsible AI practices built in. Build better applications with sophisticated retrieval strategies backed by decades of research and customer validation. Quickly deploy your generative AI app with seamless platform and data integrations for data sources, AI models, and frameworks. Automatically upload data from a wide range of supported Azure and third-party sources. Streamline vector data processing with built-in extraction, chunking, enrichment, and vectorization, all in one flow. Support for multivector, hybrid, multilingual, and metadata filtering. Move beyond vector-only search with keyword match scoring, reranking, geospatial search, and autocomplete.
    Starting Price: $0.11 per hour
  • 7
    Embeddinghub

    Embeddinghub

    Featureform

    Operationalize your embeddings with one simple tool. Experience a comprehensive database designed to provide embedding functionality that, until now, required multiple platforms. Elevate your machine learning quickly and painlessly through Embeddinghub. Embeddings are dense, numerical representations of real-world objects and relationships, expressed as vectors. They are often created by first defining a supervised machine learning problem, known as a "surrogate problem." Embeddings intend to capture the semantics of the inputs they were derived from, subsequently getting shared and reused for improved learning across machine learning models. Embeddinghub lets you achieve this in a streamlined, intuitive way.
    Starting Price: Free
  • 8
    MyScale

    MyScale

    MyScale

    MyScale is an innovative AI database that seamlessly integrates vector search with SQL analytics, delivering a comprehensive, fully managed, and high-performance solution. Key Features: - Superior Data Capacity and Performance: Each MyScale pod supports 5 million 768-dimensional data points with exceptional accuracy, enabling over 150 queries per second (QPS). - Rapid Data Ingestion: Import up to 5 million data points in under 30 minutes, reducing waiting time and enabling faster utilization of your vector data. - Flexible Indexing: MyScale allows you to create multiple tables with unique vector indexes, efficiently managing diverse vector data within a single cluster. - Effortless Data Import and Backup: Seamlessly import/export data from/to S3 or other compatible storage systems, ensuring smooth data management and backup processes. With MyScale, unleash the power of advanced AI database capabilities for efficient and effective data analysis.
  • 9
    LanceDB

    LanceDB

    LanceDB

    LanceDB is a developer-friendly, open source database for AI. From hyperscalable vector search and advanced retrieval for RAG to streaming training data and interactive exploration of large-scale AI datasets, LanceDB is the best foundation for your AI application. Installs in seconds and fits seamlessly into your existing data and AI toolchain. An embedded database (think SQLite or DuckDB) with native object storage integration, LanceDB can be deployed anywhere and easily scales to zero when not in use. From rapid prototyping to hyper-scale production, LanceDB delivers blazing-fast performance for search, analytics, and training for multimodal AI data. Leading AI companies have indexed billions of vectors and petabytes of text, images, and videos, at a fraction of the cost of other vector databases. More than just embedding. Filter, select, and stream training data directly from object storage to keep GPU utilization high.
    Starting Price: $16.03 per month
  • 10
    Faiss

    Faiss

    Meta

    Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python. Some of the most useful algorithms are implemented on the GPU. It is developed by Facebook AI Research.
    Starting Price: Free
  • 11
    LlamaIndex

    LlamaIndex

    LlamaIndex

    LlamaIndex is a “data framework” to help you build LLM apps. Connect semi-structured data from API's like Slack, Salesforce, Notion, etc. LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. LlamaIndex provides the key tools to augment your LLM applications with data. Connect your existing data sources and data formats (API's, PDF's, documents, SQL, etc.) to use with a large language model application. Store and index your data for different use cases. Integrate with downstream vector store and database providers. LlamaIndex provides a query interface that accepts any input prompt over your data and returns a knowledge-augmented response. Connect unstructured sources such as documents, raw text files, PDF's, videos, images, etc. Easily integrate structured data sources from Excel, SQL, etc. Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • 12
    VectorDB

    VectorDB

    VectorDB

    VectorDB is a lightweight Python package for storing and retrieving text using chunking, embedding, and vector search techniques. It provides an easy-to-use interface for saving, searching, and managing textual data with associated metadata and is designed for use cases where low latency is essential. Vector search and embeddings are essential when working with large language models because they enable efficient and accurate retrieval of relevant information from massive datasets. By converting text into high-dimensional vectors, these techniques allow for quick comparisons and searches, even when dealing with millions of documents. This makes it possible to find the most relevant results in a fraction of the time it would take using traditional text-based search methods. Additionally, embeddings capture the semantic meaning of the text, which helps improve the quality of the search results and enables more advanced natural language processing tasks.
    Starting Price: Free
  • 13
    Weaviate

    Weaviate

    Weaviate

    Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from your favorite ML-models, and scale seamlessly into billions of data objects. Whether you bring your own vectors or use one of the vectorization modules, you can index billions of data objects to search through. Combine multiple search techniques, such as keyword-based and vector search, to provide state-of-the-art search experiences. Improve your search results by piping them through LLM models like GPT-3 to create next-gen search experiences. Beyond search, Weaviate's next-gen vector database can power a wide range of innovative apps. Perform lightning-fast pure vector similarity search over raw vectors or data objects, even with filters. Combine keyword-based search with vector search techniques for state-of-the-art results. Use any generative model in combination with your data, for example to do Q&A over your dataset.
    Starting Price: Free
  • 14
    txtai

    txtai

    NeuML

    txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
    Starting Price: Free
  • 15
    Milvus

    Milvus

    Zilliz

    Vector database built for scalable similarity search. Open-source, highly scalable, and blazing fast. Store, index, and manage massive embedding vectors generated by deep neural networks and other machine learning (ML) models. With Milvus vector database, you can create a large-scale similarity search service in less than a minute. Simple and intuitive SDKs are also available for a variety of different languages. Milvus is hardware efficient and provides advanced indexing algorithms, achieving a 10x performance boost in retrieval speed. Milvus vector database has been battle-tested by over a thousand enterprise users in a variety of use cases. With extensive isolation of individual system components, Milvus is highly resilient and reliable. The distributed and high-throughput nature of Milvus makes it a natural fit for serving large-scale vector data. Milvus vector database adopts a systemic approach to cloud-nativity, separating compute from storage.
    Starting Price: Free
  • 16
    Vespa

    Vespa

    Vespa.ai

    Vespa is forBig Data + AI, online. At any scale, with unbeatable performance. To build production-worthy online applications that combine data and AI, you need more than point solutions: You need a platform that integrates data and compute to achieve true scalability and availability - and which does this without limiting your freedom to innovate. Only Vespa does this. Vespa is a fully featured search engine and vector database. It supports vector search (ANN), lexical search, and search in structured data, all in the same query. Users can easily build recommendation applications on Vespa. Integrated machine-learned model inference allows you to apply AI to make sense of your data in real-time. Together with Vespa's proven scaling and high availability, this empowers you to create production-ready search applications at any scale and with any combination of features.
    Starting Price: Free
  • 17
    Couchbase

    Couchbase

    Couchbase

    Unlike other NoSQL databases, Couchbase provides an enterprise-class, multicloud to edge database that offers the robust capabilities required for business-critical applications on a highly scalable and available platform. As a distributed cloud-native database, Couchbase runs in modern dynamic environments and on any cloud, either customer-managed or fully managed as-a-service. Couchbase is built on open standards, combining the best of NoSQL with the power and familiarity of SQL, to simplify the transition from mainframe and relational databases. Couchbase Server is a multipurpose, distributed database that fuses the strengths of relational databases such as SQL and ACID transactions with JSON’s versatility, with a foundation that is extremely fast and scalable. It’s used across industries for things like user profiles, dynamic product catalogs, GenAI apps, vector search, high-speed caching, and much more.
  • 18
    Mixedbread

    Mixedbread

    Mixedbread

    Mixedbread is a fully-managed AI search engine that allows users to build production-ready AI search and Retrieval-Augmented Generation (RAG) applications. It offers a complete AI search stack, including vector stores, embedding and reranking models, and document parsing. Users can transform raw data into intelligent search experiences that power AI agents, chatbots, and knowledge systems without the complexity. It integrates with tools like Google Drive, SharePoint, Notion, and Slack. Its vector stores enable users to build production search engines in minutes, supporting over 100 languages. Mixedbread's embedding and reranking models have achieved over 50 million downloads and outperform OpenAI in semantic search and RAG tasks while remaining open-source and cost-effective. The document parser extracts text, tables, and layouts from PDFs, images, and complex documents, providing clean, AI-ready content without manual preprocessing.
  • 19
    ConfidentialMind

    ConfidentialMind

    ConfidentialMind

    We've done the work of bundling and pre-configuring all the components you need for building solutions and integrating LLMs directly into your business processes. With ConfidentialMind you can jump right into action. Deploys an endpoint for the most powerful open source LLMs like Llama-2, turning it into an internal LLM API. Imagine ChatGPT in your very own cloud. This is the most secure solution possible. Connects the rest of the stack with the APIs of the largest hosted LLM providers like Azure OpenAI, AWS Bedrock, or IBM. ConfidentialMind deploys a playground UI based on Streamlit with a selection of LLM-powered productivity tools for your company such as writing assistants and document analysts. Includes a vector database, critical components for the most common LLM applications for shifting through massive knowledge bases with thousands of documents efficiently. Allows you to control the access to the solutions your team builds and what data the LLMs have access to.
  • 20
    Marqo

    Marqo

    Marqo

    Marqo is more than a vector database, it's an end-to-end vector search engine. Vector generation, storage, and retrieval are handled out of the box through a single API. No need to bring your own embeddings. Accelerate your development cycle with Marqo. Index documents and begin searching in just a few lines of code. Create multimodal indexes and search combinations of images and text with ease. Choose from a range of open source models or bring your own. Build interesting and complex queries with ease. With Marqo you can compose queries with multiple weighted components. With Marqo, input pre-processing, machine learning inference, and storage are all included out of the box. Run Marqo in a Docker image on your laptop or scale it up to dozens of GPU inference nodes in the cloud. Marqo can be scaled to provide low-latency searches against multi-terabyte indexes. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images.
    Starting Price: $86.58 per month
  • 21
    TopK

    TopK

    TopK

    TopK is a serverless, cloud-native, document database built for powering search applications. It features native support for both vector search (vectors are simply another data type) and keyword search (BM25-style) in a single, unified system. With its powerful query expression language, TopK enables you to build reliable search applications (semantic search, RAG, multi-modal, you name it) without juggling multiple databases or services. Our unified retrieval engine will evolve to support document transformation (automatically generate embeddings), query understanding (parse metadata filters from user query), and adaptive ranking (provide more relevant results by sending “relevance feedback” back to TopK) under one unified roof.
  • 22
    Flowise

    Flowise

    Flowise AI

    Flowise is an open-source, low-code platform that enables developers to create customized Large Language Model (LLM) applications through a user-friendly drag-and-drop interface. It supports integration with various LLMs, including LangChain and LlamaIndex, and offers over 100 integrations to facilitate the development of AI agents and orchestration flows. Flowise provides APIs, SDKs, and embedded widgets for seamless incorporation into existing systems, and is platform-agnostic, allowing deployment in air-gapped environments with local LLMs and vector databases.
    Starting Price: Free
  • 23
    Metal

    Metal

    Metal

    Metal is your production-ready, fully-managed, ML retrieval platform. Use Metal to find meaning in your unstructured data with embeddings. Metal is a managed service that allows you to build AI products without the hassle of managing infrastructure. Integrations with OpenAI, CLIP, and more. Easily process & chunk your documents. Take advantage of our system in production. Easily plug into the MetalRetriever. Simple /search endpoint for running ANN queries. Get started with a free account. Metal API Keys to use our API & SDKs. With your API Key, you can use authenticate by populating the headers. Learn how to use our Typescript SDK to implement Metal into your application. Although we love TypeScript, you can of course utilize this library in JavaScript. Mechanism to fine-tune your spp programmatically. Indexed vector database of your embeddings. Resources that represent your specific ML use-case.
    Starting Price: $25 per month
  • 24
    MemMachine

    MemMachine

    MemVerge

    An open-source memory layer for advanced AI agents. It enables AI-powered applications to learn, store, and recall data and preferences from past sessions to enrich future interactions. MemMachine’s memory layer persists across multiple sessions, agents, and large language models, building a sophisticated, evolving user profile. It transforms AI chatbots into personalized, context-aware AI assistants designed to understand and respond with better precision and depth.
    Starting Price: $2,500 per month
  • 25
    Cognee

    Cognee

    Cognee

    ​Cognee is an open source AI memory engine that transforms raw data into structured knowledge graphs, enhancing the accuracy and contextual understanding of AI agents. It supports various data types, including unstructured text, media files, PDFs, and tables, and integrates seamlessly with several data sources. Cognee employs modular ECL pipelines to process and organize data, enabling AI agents to retrieve relevant information efficiently. It is compatible with vector and graph databases and supports LLM frameworks like OpenAI, LlamaIndex, and LangChain. Key features include customizable storage options, RDF-based ontologies for smart data structuring, and the ability to run on-premises, ensuring data privacy and compliance. Cognee's distributed system is scalable, capable of handling large volumes of data, and is designed to reduce AI hallucinations by providing AI agents with a coherent and interconnected data landscape.
    Starting Price: $25 per month
  • 26
    Mem0

    Mem0

    Mem0

    Mem0 is a self-improving memory layer designed for Large Language Model (LLM) applications, enabling personalized AI experiences that save costs and delight users. It remembers user preferences, adapts to individual needs, and continuously improves over time. Key features include enhancing future conversations by building smarter AI that learns from every interaction, reducing LLM costs by up to 80% through intelligent data filtering, delivering more accurate and personalized AI outputs by leveraging historical context, and offering easy integration compatible with platforms like OpenAI and Claude. Mem0 is perfect for projects such as customer support, where chatbots remember past interactions to reduce repetition and speed up resolution times; personal AI companions that recall preferences and past conversations for more meaningful interactions; AI agents that learn from each interaction to become more personalized and effective over time.
    Starting Price: $249 per month
  • 27
    Semantic Kernel
    Semantic Kernel is a lightweight, open-source development kit that lets you easily build AI agents and integrate the latest AI models into your C#, Python, or Java codebase. It serves as an efficient middleware that enables rapid delivery of enterprise-grade solutions. Microsoft and other Fortune 500 companies are already leveraging Semantic Kernel because it’s flexible, modular, and observable. Backed with security-enhancing capabilities like telemetry support, hooks, and filters you’ll feel confident you’re delivering responsible AI solutions at scale. Version 1.0+ support across C#, Python, and Java means it’s reliable, and committed to nonbreaking changes. Any existing chat-based APIs are easily expanded to support additional modalities like voice and video. Semantic Kernel was designed to be future-proof, easily connecting your code to the latest AI models evolving with the technology as it advances.
    Starting Price: Free
  • 28
    Perst

    Perst

    McObject

    Perst is McObject’s open source, dual license, object-oriented embedded database system (ODBMS). It is available in one edition developed as an all-Java embedded database, and another implemented in C# (for Microsoft .NET Framework applications). Perst gives developers the ability to store, sort, and retrieve objects in their applications with maximum speed and with low memory and storage overhead while leveraging the object-oriented paradigm of Java and C#. In the TestIndex and PolePosition benchmarks, Perst displays one of its strongest features: its significant performance advantage over Java and .NET embedded database alternatives. Perst stores data directly in Java and .NET objects, eliminating the translation required for storage in relational and object-relational databases. This boosts run-time performance. Perst’s core consists of only five thousand lines of code. The small footprint imposes minimal demands on system resources.
    Starting Price: Free
  • 29
    HyperSQL DataBase

    HyperSQL DataBase

    The hsql Development Group

    HSQLDB (HyperSQL DataBase) is the leading SQL relational database system written in Java. It offers a small, fast multithreaded and transactional database engine with in-memory and disk-based tables and supports embedded and server modes. It includes a powerful command line SQL tool and simple GUI query tools. HSQLDB supports the widest range of SQL Standard features seen in any open source database engine: SQL:2016 core language features and an extensive list of SQL:2016 optional features. It supports full Advanced ANSI-92 SQL with only two exceptions. Many extensions to the Standard, including syntax compatibility modes and features of other popular database engines, are also supported.
  • 30
    Deep Lake

    Deep Lake

    activeloop

    Generative AI may be new, but we've been building for this day for the past 5 years. Deep Lake thus combines the power of both data lakes and vector databases to build and fine-tune enterprise-grade, LLM-based solutions, and iteratively improve them over time. Vector search does not resolve retrieval. To solve it, you need a serverless query for multi-modal data, including embeddings or metadata. Filter, search, & more from the cloud or your laptop. Visualize and understand your data, as well as the embeddings. Track & compare versions over time to improve your data & your model. Competitive businesses are not built on OpenAI APIs. Fine-tune your LLMs on your data. Efficiently stream data from remote storage to the GPUs as models are trained. Deep Lake datasets are visualized right in your browser or Jupyter Notebook. Instantly retrieve different versions of your data, materialize new datasets via queries on the fly, and stream them to PyTorch or TensorFlow.
    Starting Price: $995 per month
  • 31
    Cloudflare Vectorize
    Begin building for free in minutes. Vectorize enables fast & cost-effective vector storage to power your search & AI Retrieval Augmented Generation (RAG) applications. Avoid tool sprawl & reduce total cost of ownership, Vectorize seamlessly integrates with Cloudflare’s AI developer platform and AI gateway for centralized development, monitoring & control of AI applications on a global scale. Vectorize is a globally distributed vector database that enables you to build full-stack, AI-powered applications with Cloudflare Workers AI. Vectorize makes querying embeddings, representations of values or objects like text, images, and audio that are designed to be consumed by machine learning models and semantic search algorithms, faster, easier, and more affordable. Search, similarity, recommendation, classification & anomaly detection based on your own data. Improved results & faster search. String, number & boolean types are supported.
  • 32
    Agent Payments Protocol (AP2)
    Google’s Agent Payments Protocol (AP2) is an open protocol designed together with over 60 payments, fintech, and tech companies (e.g., Mastercard, PayPal, Adyen, Coinbase, Etsy) to enable secure, agent-led transactions across platforms. It builds on earlier open standards like Agent2Agent (A2A) and the Model Context Protocol (MCP) to ensure that when an AI agent initiates or completes a payment on behalf of a user, three core requirements are met: authorization (proving the user explicitly gave permission for that specific purchase), authenticity (ensuring the agent’s intended purchase matches what the user meant), and accountability (clear audit trails and responsibility in case of errors or fraud). The protocol uses mandates, which are cryptographically signed digital contracts backed by verifiable credentials.
  • 33
    Azure Managed Redis
    Azure Managed Redis features the latest Redis innovations, industry-leading availability, and a cost-effective Total Cost of Ownership (TCO) designed for the hyperscale cloud. Azure Managed Redis delivers these capabilities on a trusted cloud platform, empowering businesses to scale and optimize their generative AI applications seamlessly. Azure Managed Redis brings the latest Redis innovations to support high-performance, scalable AI applications. With features like in-memory data storage, vector similarity search, and real-time processing, it enables developers to handle large datasets efficiently, accelerate machine learning, and build faster AI solutions. Its interoperability with Azure OpenAI Service enables AI workloads to be faster, scalable, and ready for mission-critical use cases, making it an ideal choice for building modern, intelligent applications.
  • 34
    MySQL

    MySQL

    Oracle

    MySQL is the world's most popular open source database. With its proven performance, reliability, and ease-of-use, MySQL has become the leading database choice for web-based applications, used by high profile web properties including Facebook, Twitter, YouTube, and all five of the top five websites*. Additionally, it is an extremely popular choice as embedded database, distributed by thousands of ISVs and OEMs.
  • 35
    IBM Informix
    IBM Informix® is a fast and flexible database with the ability to seamlessly integrate SQL, NoSQL/JSON, and time series and spatial data. Its versatility and ease of use make Informix a preferred solution for a wide range of environments, from enterprise data warehouses to individual application development. Also, with its small footprint and self-managing capabilities, Informix is well suited for embedded data-management solutions. IoT data demands robust processing and integration capabilities. Informix offers a hybrid database system with minimal administrative requirements and memory footprint combined with powerful functionality. Key features make Informix ideal for multi-tiered architectures that require processing at the device level, at gateway layers and in the cloud. Native encryption to protect data at rest and in motion. Support for flexible schema, multiple APIs and configurations.
  • 36
    OneStep-JV

    OneStep-JV

    Business Control Systems

    POS system brings the most advanced technology available in a full-featured suite of applications for retailers and distributors. The OneStep-JV™ Point of Sale system combines the power and flexibility of Java and Oracle. Written in Java with Oracle as the embedded database at its foundation, OneStep-JV™ point of sale systems bring the most advanced and reliable technology and inventory management software available to achieve operational stability and cross-platform portability for retailers and distributors. The use of Java enables the operation of OneStep-JV™ POS systems on single-user computers, small and very large-scale networks and portable devices like Palm Tops running over a multitude of operating systems such as Windows and Windows Networks, Novell, Unix and Linux. The stability of Oracle gives OneStep-JV™ POS systems a resilient database foundation designed with auto-recovery features to enable database and inventory control software integrity.
  • 37
    Actian Zen
    Actian Zen is an embedded, high-performance, and low-maintenance database management system designed for edge applications, mobile devices, and IoT environments. It offers a seamless integration of SQL and NoSQL data models, providing flexibility for developers working with structured and unstructured data. Actian Zen is known for its small footprint, scalability, and high reliability, making it ideal for resource-constrained environments where consistent performance and minimal administrative overhead are essential. With built-in security features and a self-tuning architecture, it supports real-time data processing and analytics without the need for constant monitoring or maintenance. Actian Zen is widely used in industries like healthcare, retail, and manufacturing, where edge computing and distributed data environments are critical for business operations.
  • 38
    VelocityDB

    VelocityDB

    VelocityDB

    VelocityDB is a database engine like no other. It can store data faster and more efficiently than any other solution at a fraction of the cost of other database engines. It stores .NET objects as they are with no mapping to tables, JSON or XML. VelocityGraph is an add on open source property graph database that can be used in conjunction with the VelocityDB object database. Object and graph database engine VelocityDB is a C# .NET noSQL object fatabase, extended as graph database is VelocityGraph. World’s fastest most scalable & flexible database. A bug reported with a reproducible test case is usually fixed within a week. The most important benefit is the flexibility that this database system provides. No other types of database system lets you fine tune your application to the finest details. Using VelocityDB, you can choose the best possible data structures for your application. You can control where you place the data persistently and how it's indexed and accessed.
    Starting Price: $200 per 6 moths
  • 39
    SuperDuperDB

    SuperDuperDB

    SuperDuperDB

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, and HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Deploy all your AI models to automatically compute outputs (inference) in your datastore in a single environment with simple Python commands.
  • 40
    Oracle Autonomous Database
    Oracle Autonomous Database is a fully automated cloud database that uses machine learning to automate database tuning, security, backups, updates, and other routine management tasks traditionally performed by DBAs. It supports a wide range of data types and models, including SQL, JSON documents, graph, geospatial, text, and vectors, enabling developers to build applications for any workload without integrating multiple specialty databases. Built-in AI and machine learning capabilities allow for natural language queries, automated data insights, and the development of AI-powered applications. It offers self-service tools for data loading, transformation, analysis, and governance, reducing the need for IT intervention. It provides flexible deployment options, including serverless and dedicated infrastructure on Oracle Cloud Infrastructure (OCI), as well as on-premises with Exadata Cloud@Customer.
    Starting Price: $123.86 per month
  • 41
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 42
    Astra DB

    Astra DB

    DataStax

    Astra DB from DataStax is vector database for developers that need to get accurate Generative AI applications into production, quickly and efficiently. Built on Apache Cassandra, Astra DB is the only vector database that can make vector updates immediately available to applications and scale to the largest real-time data and streaming workloads, securely on any cloud. Astra DB offers unprecedented serverless, pay as you go pricing and the flexibility of multi-cloud and open-source. You can store up to 80GB and/or perform 20 million operations per month. Securely connect to VPC peering and private links. Manage your encryption keys with your own key management and SAML SSO secure account accessibility. You can deploy on AWS, GCP, or Azure while still maintaining open-source Cassandra compatibility.
  • 43
    Liminary

    Liminary

    Liminary

    Liminary is a knowledge-management platform designed to serve as a digital “knowledge companion” for professionals working with large volumes of research, content, or information. It enables users to capture and organise data from multiple formats, including articles, PDFs, videos, and meeting transcripts, into a unified library where each item becomes a structured “source.” When you save content, you can highlight key insights, annotate with personal notes, and build collections around projects or themes. Liminary then supports synthesis by automatically detecting connections between ideas, surfacing patterns you might overlook, and enabling you to ask questions. The platform also allows users to create output artefacts, such as research reports, investment memos, marketing briefs, or strategy decks that draw from their saved knowledge with source citations embedded.
  • 44
    OpenMemory

    OpenMemory

    OpenMemory

    OpenMemory is a Chrome extension that adds a universal memory layer to browser-based AI tools, capturing context from your interactions with ChatGPT, Claude, Perplexity and more so every AI picks up right where you left off. It auto-loads your preferences, project setups, progress notes, and custom instructions across sessions and platforms, enriching prompts with context-rich snippets to deliver more personalized, relevant responses. With one-click sync from ChatGPT, you preserve existing memories and make them available everywhere, while granular controls let you view, edit, or disable memories for specific tools or sessions. Designed as a lightweight, secure extension, it ensures seamless cross-device synchronization, integrates with major AI chat interfaces via a simple toolbar, and offers workflow templates for use cases like code reviews, research note-taking, and creative brainstorming.
    Starting Price: $19 per month
  • 45
    AI21 Studio

    AI21 Studio

    AI21 Studio

    AI21 Studio provides API access to Jurassic-1 large-language-models. Our models power text generation and comprehension features in thousands of live applications. Take on any language task. Our Jurassic-1 models are trained to follow natural language instructions and require just a few examples to adapt to new tasks. Use our specialized APIs for common tasks like summarization, paraphrasing and more. Access superior results at a lower cost without reinventing the wheel. Need to fine-tune your own custom model? You're just 3 clicks away. Training is fast, affordable and trained models are deployed immediately. Give your users superpowers by embedding an AI co-writer in your app. Drive user engagement and success with features like long-form draft generation, paraphrasing, repurposing and custom auto-complete.
    Starting Price: $29 per month
  • 46
    Hyperspell

    Hyperspell

    Hyperspell

    Hyperspell is an end-to-end memory and context layer for AI agents that lets you build data-powered, context-aware applications without managing the underlying pipeline. It ingests data continuously from user-connected sources (e.g., drive, docs, chat, calendar), builds a bespoke memory graph, and maintains context so future queries are informed by past interactions. Hyperspell supports persistent memory, context engineering, and grounded generation, producing structured or LLM-ready summaries from the memory graph. It integrates with your choice of LLM while enforcing security standards and keeping data private and auditable. With one-line integration and pre-built components for authentication and data access, Hyperspell abstracts away the work of indexing, chunking, schema extraction, and memory updates. Over time, it “learns” from interactions; relevant answers reinforce context and improve future performance.
  • 47
    MemU

    MemU

    NevaMind AI

    MemU is an intelligent memory layer designed specifically for large language model (LLM) applications, enabling AI companions to remember and organize information efficiently. It functions as an autonomous, evolving file system that links memories into an interconnected knowledge graph, improving accuracy, retrieval speed, and reducing costs. Developers can easily integrate MemU into their LLM apps using SDKs and APIs compatible with OpenAI, Anthropic, Gemini, and other AI platforms. MemU offers enterprise-grade solutions including commercial licenses, custom development, and real-time user behavior analytics. With 24/7 premium support and scalable infrastructure, MemU helps businesses build reliable AI memory features. The platform significantly outperforms competitors in accuracy benchmarks, making it ideal for memory-first AI applications.
  • 48
    Model Context Protocol (MCP)
    Model Context Protocol (MCP) is an open protocol designed to standardize how applications provide context to large language models (LLMs). It acts as a universal connector, similar to a USB-C port, allowing LLMs to seamlessly integrate with various data sources and tools. MCP supports a client-server architecture, enabling programs (clients) to interact with lightweight servers that expose specific capabilities. With growing pre-built integrations and flexibility to switch between LLM vendors, MCP helps users build complex workflows and AI agents while ensuring secure data management within their infrastructure.
    Starting Price: Free
  • 49
    Haystack

    Haystack

    deepset

    Apply the latest NLP technology to your own data with the use of Haystack's pipeline architecture. Implement production-ready semantic search, question answering, summarization and document ranking for a wide range of NLP applications. Evaluate components and fine-tune models. Ask questions in natural language and find granular answers in your documents using the latest QA models with the help of Haystack pipelines. Perform semantic search and retrieve ranked documents according to meaning, not just keywords! Make use of and compare the latest pre-trained transformer-based languages models like OpenAI’s GPT-3, BERT, RoBERTa, DPR, and more. Build semantic search and question-answering applications that can scale to millions of documents. Building blocks for the entire product development cycle such as file converters, indexing functions, models, labeling tools, domain adaptation modules, and REST API.
  • 50
    PromptLayer

    PromptLayer

    PromptLayer

    The first platform built for prompt engineers. Log OpenAI requests, search usage history, track performance, and visually manage prompt templates. manage Never forget that one good prompt. GPT in prod, done right. Trusted by over 1,000 engineers to version prompts and monitor API usage. Start using your prompts in production. To get started, create an account by clicking “log in” on PromptLayer. Once logged in, click the button to create an API key and save this in a secure location. After making your first few requests, you should be able to see them in the PromptLayer dashboard! You can use PromptLayer with LangChain. LangChain is a popular Python library aimed at assisting in the development of LLM applications. It provides a lot of helpful features like chains, agents, and memory. Right now, the primary way to access PromptLayer is through our Python wrapper library that can be installed with pip.
    Starting Price: Free