Alternatives to Neuralhub

Compare Neuralhub alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Neuralhub in 2025. Compare features, ratings, user reviews, pricing, and more from Neuralhub competitors and alternatives in order to make an informed decision for your business.

  • 1
    Amazon Rekognition
    Amazon Rekognition makes it easy to add image and video analysis to your applications using proven, highly scalable, deep learning technology that requires no machine learning expertise to use. With Amazon Rekognition, you can identify objects, people, text, scenes, and activities in images and videos, as well as detect any inappropriate content. Amazon Rekognition also provides highly accurate facial analysis and facial search capabilities that you can use to detect, analyze, and compare faces for a wide variety of user verification, people counting, and public safety use cases. With Amazon Rekognition Custom Labels, you can identify the objects and scenes in images that are specific to your business needs. For example, you can build a model to classify specific machine parts on your assembly line or to detect unhealthy plants. Amazon Rekognition Custom Labels takes care of the heavy lifting of model development for you, so no machine learning experience is required.
  • 2
    Neuri

    Neuri

    Neuri

    We conduct and implement cutting-edge research on artificial intelligence to create real advantage in financial investment. Illuminating the financial market with ground-breaking neuro-prediction. We combine novel deep reinforcement learning algorithms and graph-based learning with artificial neural networks for modeling and predicting time series. Neuri strives to generate synthetic data emulating the global financial markets, testing it with complex simulations of trading behavior. We bet on the future of quantum optimization in enabling our simulations to surpass the limits of classical supercomputing. Financial markets are highly fluid, with dynamics evolving over time. As such we build AI algorithms that adapt and learn continuously, in order to uncover the connections between different financial assets, classes and markets. The application of neuroscience-inspired models, quantum algorithms and machine learning to systematic trading at this point is underexplored.
  • 3
    Neural Designer
    Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge. With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains. Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort. Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.
    Starting Price: $2495/year (per user)
  • 4
    ConvNetJS

    ConvNetJS

    ConvNetJS

    ConvNetJS is a Javascript library for training deep learning models (neural networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. The library allows you to formulate and solve neural networks in Javascript, and was originally written by @karpathy. However, the library has since been extended by contributions from the community and more are warmly welcome. The fastest way to obtain the library in a plug-and-play way if you don't care about developing is through this link to convnet-min.js, which contains the minified library. Alternatively, you can also choose to download the latest release of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create a bare-bones index.html file in some folder and copy build/convnet-min.js to the same folder.
  • 5
    Automaton AI

    Automaton AI

    Automaton AI

    With Automaton AI’s ADVIT, create, manage and develop high-quality training data and DNN models all in one place. Optimize the data automatically and prepare it for each phase of the computer vision pipeline. Automate the data labeling processes and streamline data pipelines in-house. Manage the structured and unstructured video/image/text datasets in runtime and perform automatic functions that refine your data in preparation for each step of the deep learning pipeline. Upon accurate data labeling and QA, you can train your own model. DNN training needs hyperparameter tuning like batch size, learning, rate, etc. Optimize and transfer learning on trained models to increase accuracy. Post-training, take the model to production. ADVIT also does model versioning. Model development and accuracy parameters can be tracked in run-time. Increase the model accuracy with a pre-trained DNN model for auto-labeling.
  • 6
    NVIDIA GPU-Optimized AMI
    The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'
    Starting Price: $3.06 per hour
  • 7
    NVIDIA DIGITS

    NVIDIA DIGITS

    NVIDIA DIGITS

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. Interactively train models using TensorFlow and visualize model architecture using TensorBoard. Integrate custom plug-ins for importing special data formats such as DICOM used in medical imaging.
  • 8
    TFLearn

    TFLearn

    TFLearn

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorial and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations and more. The high-level API currently supports most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks.
  • 9
    Microsoft Cognitive Toolkit
    The Microsoft Cognitive Toolkit (CNTK) is an open-source toolkit for commercial-grade distributed deep learning. It describes neural networks as a series of computational steps via a directed graph. CNTK allows the user to easily realize and combine popular model types such as feed-forward DNNs, convolutional neural networks (CNNs) and recurrent neural networks (RNNs/LSTMs). CNTK implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers. CNTK can be included as a library in your Python, C#, or C++ programs, or used as a standalone machine-learning tool through its own model description language (BrainScript). In addition you can use the CNTK model evaluation functionality from your Java programs. CNTK supports 64-bit Linux or 64-bit Windows operating systems. To install you can either choose pre-compiled binary packages, or compile the toolkit from the source provided in GitHub.
  • 10
    Deci

    Deci

    Deci AI

    Easily build, optimize, and deploy fast & accurate models with Deci’s deep learning development platform powered by Neural Architecture Search. Instantly achieve accuracy & runtime performance that outperform SoTA models for any use case and inference hardware. Reach production faster with automated tools. No more endless iterations and dozens of different libraries. Enable new use cases on resource-constrained devices or cut up to 80% of your cloud compute costs. Automatically find accurate & fast architectures tailored for your application, hardware and performance targets with Deci’s NAS based AutoNAC engine. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings.
  • 11
    Fabric for Deep Learning (FfDL)
    Deep learning frameworks such as TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have contributed to the popularity of deep learning by reducing the effort and skills needed to design, train, and use deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) provides a consistent way to run these deep-learning frameworks as a service on Kubernetes. The FfDL platform uses a microservices architecture to reduce coupling between components, keep each component simple and as stateless as possible, isolate component failures, and allow each component to be developed, tested, deployed, scaled, and upgraded independently. Leveraging the power of Kubernetes, FfDL provides a scalable, resilient, and fault-tolerant deep-learning framework. The platform uses a distribution and orchestration layer that facilitates learning from a large amount of data in a reasonable amount of time across compute nodes.
  • 12
    Caffe

    Caffe

    BAIR

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
  • 13
    Keras

    Keras

    Keras

    Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API.
  • 14
    Zebra by Mipsology
    Zebra by Mipsology is the ideal Deep Learning compute engine for neural network inference. Zebra seamlessly replaces or complements CPUs/GPUs, allowing any neural network to compute faster, with lower power consumption, at a lower cost. Zebra deploys swiftly, seamlessly, and painlessly without knowledge of underlying hardware technology, use of specific compilation tools, or changes to the neural network, the training, the framework, and the application. Zebra computes neural networks at world-class speed, setting a new standard for performance. Zebra runs on highest-throughput boards all the way to the smallest boards. The scaling provides the required throughput, in data centers, at the edge, or in the cloud. Zebra accelerates any neural network, including user-defined neural networks. Zebra processes the same CPU/GPU-based trained neural network with the same accuracy without any change.
  • 15
    Supervisely

    Supervisely

    Supervisely

    The leading platform for entire computer vision lifecycle. Iterate from image annotation to accurate neural networks 10x faster. With our best-in-class data labeling tools transform your images / videos / 3d point cloud into high-quality training data. Train your models, track experiments, visualize and continuously improve model predictions, build custom solution within the single environment. Our self-hosted solution guaranties data privacy, powerful customization capabilities, and easy integration into your technology stack. A turnkey solution for Computer Vision: multi-format data annotation & management, quality control at scale and neural networks training in end-to-end platform. Inspired by professional video editing software, created by data scientists for data scientists — the most powerful video labeling tool for machine learning and more.
  • 16
    DeepCube

    DeepCube

    DeepCube

    DeepCube focuses on the research and development of deep learning technologies that result in improved real-world deployment of AI systems. The company’s numerous patented innovations include methods for faster and more accurate training of deep learning models and drastically improved inference performance. DeepCube’s proprietary framework can be deployed on top of any existing hardware in both datacenters and edge devices, resulting in over 10x speed improvement and memory reduction. DeepCube provides the only technology that allows efficient deployment of deep learning models on intelligent edge devices. After the deep learning training phase, the resulting model typically requires huge amounts of processing and consumes lots of memory. Due to the significant amount of memory and processing requirements, today’s deep learning deployments are limited mostly to the cloud.
  • 17
    Neural Magic

    Neural Magic

    Neural Magic

    GPUs bring data in and out quickly, but have little locality of reference because of their small caches. They are geared towards applying a lot of compute to little data, not little compute to a lot of data. The networks designed to run on them therefore execute full layer after full layer in order to saturate their computational pipeline (see Figure 1 below). In order to deal with large models, given their small memory size (tens of gigabytes), GPUs are grouped together and models are distributed across them, creating a complex and painful software stack, complicated by the need to deal with many levels of communication and synchronization among separate machines. CPUs, on the other hand, have large, much faster caches than GPUs, and have an abundance of memory (terabytes). A typical CPU server can have memory equivalent to tens or even hundreds of GPUs. CPUs are perfect for a brain-like ML world in which parts of an extremely large network are executed piecemeal, as needed.
  • 18
    MXNet

    MXNet

    The Apache Software Foundation

    A hybrid front-end seamlessly transitions between Gluon eager imperative mode and symbolic mode to provide both flexibility and speed. Scalable distributed training and performance optimization in research and production is enabled by the dual parameter server and Horovod support. Deep integration into Python and support for Scala, Julia, Clojure, Java, C++, R and Perl. A thriving ecosystem of tools and libraries extends MXNet and enables use-cases in computer vision, NLP, time series and more. Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision-making process have stabilized in a manner consistent with other successful ASF projects. Join the MXNet scientific community to contribute, learn, and get answers to your questions.
  • 19
    DeePhi Quantization Tool

    DeePhi Quantization Tool

    DeePhi Quantization Tool

    This is a model quantization tool for convolution neural networks(CNN). This tool could quantize both weights/biases and activations from 32-bit floating-point (FP32) format to 8-bit integer(INT8) format or any other bit depths. With this tool, you can boost the inference performance and efficiency significantly, while maintaining the accuracy. This tool supports common layer types in neural networks, including convolution, pooling, fully-connected, batch normalization and so on. The quantization tool does not need the retraining of the network or labeled datasets, only one batch of pictures are needed. The process time ranges from a few seconds to several minutes depending on the size of neural network, which makes rapid model update possible. This tool is collaborative optimized for DeePhi DPU and could generate INT8 format model files required by DNNC.
    Starting Price: $0.90 per hour
  • 20
    ThirdAI

    ThirdAI

    ThirdAI

    ThirdAI (pronunciation: /THərd ī/ Third eye) is a cutting-edge Artificial intelligence startup carving scalable and sustainable AI. ThirdAI accelerator builds hash-based processing algorithms for training and inference with neural networks. The technology is a result of 10 years of innovation in finding efficient (beyond tensor) mathematics for deep learning. Our algorithmic innovation has demonstrated how we can make Commodity x86 CPUs 15x or faster than most potent NVIDIA GPUs for training large neural networks. The demonstration has shaken the common knowledge prevailing in the AI community that specialized processors like GPUs are significantly superior to CPUs for training neural networks. Our innovation would not only benefit current AI training by shifting to lower-cost CPUs, but it should also allow the “unlocking” of AI training workloads on GPUs that were not previously feasible.
  • 21
    Determined AI

    Determined AI

    Determined AI

    Distributed training without changing your model code, determined takes care of provisioning machines, networking, data loading, and fault tolerance. Our open source deep learning platform enables you to train models in hours and minutes, not days and weeks. Instead of arduous tasks like manual hyperparameter tuning, re-running faulty jobs, and worrying about hardware resources. Our distributed training implementation outperforms the industry standard, requires no code changes, and is fully integrated with our state-of-the-art training platform. With built-in experiment tracking and visualization, Determined records metrics automatically, makes your ML projects reproducible and allows your team to collaborate more easily. Your researchers will be able to build on the progress of their team and innovate in their domain, instead of fretting over errors and infrastructure.
  • 22
    DataMelt

    DataMelt

    jWork.ORG

    DataMelt (or "DMelt") is an environment for numeric computation, data analysis, data mining, computational statistics, and data visualization. DataMelt can be used to plot functions and data in 2D and 3D, perform statistical tests, data mining, numeric computations, function minimization, linear algebra, solving systems of linear and differential equations. Linear, non-linear and symbolic regression are also available. Neural networks and various data-manipulation methods are integrated using Java API. Elements of symbolic computations using Octave/Matlab scripting are supported. DataMelt is a computational environment for Java platform. It can be used with different programming languages on different operating systems. Unlike other statistical programs, it is not limited to a single programming language. This software combines the world's most-popular enterprise language, Java, with the most popular scripting language used in data science, such as Jython (Python), Groovy, JRuby.
  • 23
    Deeplearning4j

    Deeplearning4j

    Deeplearning4j

    DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers.
  • 24
    Google Deep Learning Containers
    Build your deep learning project quickly on Google Cloud: Quickly prototype with a portable and consistent environment for developing, testing, and deploying your AI applications with Deep Learning Containers. These Docker images use popular frameworks and are performance optimized, compatibility tested, and ready to deploy. Deep Learning Containers provide a consistent environment across Google Cloud services, making it easy to scale in the cloud or shift from on-premises. You have the flexibility to deploy on Google Kubernetes Engine (GKE), AI Platform, Cloud Run, Compute Engine, Kubernetes, and Docker Swarm.
  • 25
    YandexART
    YandexART is a diffusion neural network by Yandex designed for image and video creation. This new neural network ranks as a global leader among generative models in terms of image generation quality. Integrated into Yandex services like Yandex Business and Shedevrum, it generates images and videos using the cascade diffusion method—initially creating images based on requests and progressively enhancing their resolution while infusing them with intricate details. The updated version of this neural network is already operational within the Shedevrum application, enhancing user experiences. YandexART fueling Shedevrum boasts an immense scale, with 5 billion parameters, and underwent training on an extensive dataset comprising 330 million pairs of images and corresponding text descriptions. Through the fusion of a refined dataset, a proprietary text encoder, and reinforcement learning, Shedevrum consistently delivers high-calibre content.
  • 26
    SHARK

    SHARK

    SHARK

    SHARK is a fast, modular, feature-rich open-source C++ machine learning library. It provides methods for linear and nonlinear optimization, kernel-based learning algorithms, neural networks, and various other machine learning techniques. It serves as a powerful toolbox for real-world applications as well as research. Shark depends on Boost and CMake. It is compatible with Windows, Solaris, MacOS X, and Linux. Shark is licensed under the permissive GNU Lesser General Public License. Shark provides an excellent trade-off between flexibility and ease-of-use on the one hand, and computational efficiency on the other. Shark offers numerous algorithms from various machine learning and computational intelligence domains in a way that they can be easily combined and extended. Shark comes with a lot of powerful algorithms that are to our best knowledge not implemented in any other library.
  • 27
    NVIDIA Modulus
    NVIDIA Modulus is a neural network framework that blends the power of physics in the form of governing partial differential equations (PDEs) with data to build high-fidelity, parameterized surrogate models with near-real-time latency. Whether you’re looking to get started with AI-driven physics problems or designing digital twin models for complex non-linear, multi-physics systems, NVIDIA Modulus can support your work. Offers building blocks for developing physics machine learning surrogate models that combine both physics and data. The framework is generalizable to different domains and use cases—from engineering simulations to life sciences and from forward simulations to inverse/data assimilation problems. Provides parameterized system representation that solves for multiple scenarios in near real time, letting you train once offline to infer in real time repeatedly.
  • 28
    IBM Watson Machine Learning Accelerator
    Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
  • 29
    Torch

    Torch

    Torch

    Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT, and an underlying C/CUDA implementation. The goal of Torch is to have maximum flexibility and speed in building your scientific algorithms while making the process extremely simple. Torch comes with a large ecosystem of community-driven packages in machine learning, computer vision, signal processing, parallel processing, image, video, audio and networking among others, and builds on top of the Lua community. At the heart of Torch are the popular neural network and optimization libraries which are simple to use, while having maximum flexibility in implementing complex neural network topologies. You can build arbitrary graphs of neural networks, and parallelize them over CPUs and GPUs in an efficient manner.
  • 30
    AForge.NET

    AForge.NET

    AForge.NET

    AForge.NET is an open source C# framework designed for developers and researchers in the fields of Computer Vision and Artificial Intelligence - image processing, neural networks, genetic algorithms, fuzzy logic, machine learning, robotics, etc. The work on the framework's improvement is in constants progress, what means that new feature and namespaces are coming constantly. To get knowledge about its progress you may track source repository's log or visit project discussion group to get the latest information about it. The framework is provided not only with different libraries and their sources, but with many sample applications, which demonstrate the use of this framework, and with documentation help files, which are provided in HTML Help format.
  • 31
    Synaptic

    Synaptic

    Synaptic

    Neurons are the basic unit of the neural network. They can be connected to another neuron or gate connections between other neurons. This allows you to create complex and flexible architectures. Trainers can take any given network regardless of its architecture and use any training set. It includes built-in tasks to test networks, like learning an XOR, completing a Discrete Sequence Recall task or an Embeded Reber Grammar test. Networks can be imported/exported to JSON, converted to workers or standalone functions. They can be connected to other networks or gate connections. The Architect includes built-in useful architectures such as multilayer perceptrons, multilayer long short-term memory networks (LSTM), liquid state machines and Hopfield networks. Networks can also be optimized, extended, exported to JSON, converted to Workers or standalone Functions, and cloned. A network can project a connection to another, or gate a connection between two others networks.
  • 32
    Whisper

    Whisper

    OpenAI

    We’ve trained and are open-sourcing a neural net called Whisper that approaches human-level robustness and accuracy in English speech recognition. Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. We show that the use of such a large and diverse dataset leads to improved robustness to accents, background noise, and technical language. Moreover, it enables transcription in multiple languages, as well as translation from those languages into English. We are open-sourcing models and inference code to serve as a foundation for building useful applications and for further research on robust speech processing. The Whisper architecture is a simple end-to-end approach, implemented as an encoder-decoder Transformer. Input audio is split into 30-second chunks, converted into a log-Mel spectrogram, and then passed into an encoder.
  • 33
    DeepPy

    DeepPy

    DeepPy

    DeepPy is a MIT licensed deep learning framework. DeepPy tries to add a touch of zen to deep learning as it. DeepPy relies on CUDArray for most of its calculations. Therefore, you must first install CUDArray. Note that you can choose to install CUDArray without the CUDA back-end which simplifies the installation process.
  • 34
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 35
    NeuroIntelligence
    NeuroIntelligence is a neural networks software application designed to assist neural network, data mining, pattern recognition, and predictive modeling experts in solving real-world problems. NeuroIntelligence features only proven neural network modeling algorithms and neural net techniques; software is fast and easy-to-use. Visualized architecture search, neural network training and testing. Neural network architecture search, fitness bars, network training graphs comparison. Training graphs, dataset error, network error, weights and errors distribution, neural network input importance. Testing, actual vs. output graph, scatter plot, response graph, ROC curve, confusion matrix. The interface of NeuroIntelligence is optimized to solve data mining, forecasting, classification and pattern recognition problems. You can create a better solution much faster using the tool's easy-to-use GUI and unique time-saving capabilities.
    Starting Price: $497 per user
  • 36
    Peltarion

    Peltarion

    Peltarion

    The Peltarion Platform is a low-code deep learning platform that allows you to build commercially viable AI-powered solutions, at speed and at scale. The platform allows you to build, tweak, fine-tune and deploy deep learning models. It is end-to-end, and lets you do everything from uploading data to building models and putting them into production. The Peltarion Platform and its precursor have been used to solve problems for organizations like NASA, Tesla, Dell, and Harvard. Build your own AI models or use our pre-trained ones. Just drag & drop, even the cutting-edge ones! Own the whole development process from building, training, tweaking to deploying AI. All under one hood. Operationalize AI and drive business value, with the help of our platform. Our Faster AI course is created for users who have no prior knowledge of AI. After completing seven short modules, users will be able to design and tweak their own AI models on the Peltarion platform.
  • 37
    Exafunction

    Exafunction

    Exafunction

    Exafunction optimizes your deep learning inference workload, delivering up to a 10x improvement in resource utilization and cost. Focus on building your deep learning application, not on managing clusters and fine-tuning performance. In most deep learning applications, CPU, I/O, and network bottlenecks lead to poor utilization of GPU hardware. Exafunction moves any GPU code to highly utilized remote resources, even spot instances. Your core logic remains an inexpensive CPU instance. Exafunction is battle-tested on applications like large-scale autonomous vehicle simulation. These workloads have complex custom models, require numerical reproducibility, and use thousands of GPUs concurrently. Exafunction supports models from major deep learning frameworks and inference runtimes. Models and dependencies like custom operators are versioned so you can always be confident you’re getting the right results.
  • 38
    Ray

    Ray

    Anyscale

    Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
  • 39
    Latent AI

    Latent AI

    Latent AI

    We take the hard work out of AI processing on the edge. The Latent AI Efficient Inference Platform (LEIP) enables adaptive AI at the edge by optimizing for compute, energy and memory without requiring changes to existing AI/ML infrastructure and frameworks. LEIP is a modular, fully-integrated workflow designed to train, quantize, adapt and deploy edge AI neural networks. LEIP is a modular, fully-integrated workflow designed to train, quantize and deploy edge AI neural networks. Latent AI believes in a vibrant and sustainable future driven by the power of AI and the promise of edge computing. Our mission is to deliver on the vast potential of edge AI with solutions that are efficient, practical, and useful. Latent AI helps a variety of federal and commercial organizations gain the most from their edge AI with an automated edge MLOps pipeline that creates ultra-efficient, compressed, and secured edge models at scale while also removing all maintenance and configuration concerns
  • 40
    Fido

    Fido

    Fido

    Fido is a light-weight, open-source, and highly modular C++ machine learning library. The library is targeted towards embedded electronics and robotics. Fido includes implementations of trainable neural networks, reinforcement learning methods, genetic algorithms, and a full-fledged robotic simulator. Fido also comes packaged with a human-trainable robot control system as described in Truell and Gruenstein. While the simulator is not in the most recent release, it can be found for experimentation on the simulator branch.
  • 41
    Darknet

    Darknet

    Darknet

    Darknet is an open-source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. You can find the source on GitHub or you can read more about what Darknet can do. Darknet is easy to install with only two optional dependencies, OpenCV if you want a wider variety of supported image types, and CUDA if you want GPU computation. Darknet on the CPU is fast but it's like 500 times faster on GPU! You'll have to have an Nvidia GPU and you'll have to install CUDA. By default, Darknet uses stb_image.h for image loading. If you want more support for weird formats (like CMYK jpegs, thanks Obama) you can use OpenCV instead! OpenCV also allows you to view images and detections without having to save them to disk. Classify images with popular models like ResNet and ResNeXt. Recurrent neural networks are all the rage for time-series data and NLP.
  • 42
    MatConvNet
    The VLFeat open source library implements popular computer vision algorithms specializing in image understanding and local features extraction and matching. Algorithms include Fisher Vector, VLAD, SIFT, MSER, k-means, hierarchical k-means, agglomerative information bottleneck, SLIC superpixels, quick shift superpixels, large scale SVM training, and many others. It is written in C for efficiency and compatibility, with interfaces in MATLAB for ease of use, and detailed documentation throughout. It supports Windows, Mac OS X, and Linux. MatConvNet is a MATLAB toolbox implementing Convolutional Neural Networks (CNNs) for computer vision applications. It is simple, efficient, and can run and learn state-of-the-art CNNs. Many pre-trained CNNs for image classification, segmentation, face recognition, and text detection are available.
  • 43
    Cogniac

    Cogniac

    Cogniac

    Cogniac’s no-code solution enables organizations to capitalize on the latest developments in Artificial Intelligence (AI) and convolutional neural networks to deliver superhuman operational performance. Cogniac’s AI machine vision platform enables enterprise customers to achieve Industry 4.0 standards through visual data management and automation. Cogniac helps organizations’ operations divisions deliver smart continuous improvement. The Cogniac user interface has been designed and built to be operated by a non-technical user. With simplicity at its heart, the drag and drop nature of the Cogniac platform allows subject matter experts to focus on the tasks that drive the most value. Cogniac’s platform can identify defects from as little as 100 labeled images. Once trained by 25 approved and 75 defective images, the Cogniac AI will deliver results that are comparable to a human subject matter expert within hours of set-up.
  • 44
    VisionPro Deep Learning
    VisionPro Deep Learning is the best-in-class deep learning-based image analysis software designed for factory automation. Its field-tested algorithms are optimized specifically for machine vision, with a graphical user interface that simplifies neural network training without compromising performance. VisionPro Deep Learning solves complex applications that are too challenging for traditional machine vision alone, while providing a consistency and speed that aren’t possible with human inspection. When combined with VisionPro’s rule-based vision libraries, automation engineers can easily choose the best the tool for the task at hand. VisionPro Deep Learning combines a comprehensive machine vision tool library with advanced deep learning tools inside a common development and deployment framework. It simplifies the development of highly variable vision applications.
  • 45
    Abacus.AI

    Abacus.AI

    Abacus.AI

    Abacus.AI is the world's first end-to-end autonomous AI platform that enables real-time deep learning at scale for common enterprise use-cases. Apply our innovative neural architecture search techniques to train custom deep learning models and deploy them on our end to end DLOps platform. Our AI engine will increase your user engagement by at least 30% with personalized recommendations. We generate recommendations that are truly personalized to individual preferences which means more user interaction and conversion. Don't waste time in dealing with data hassles. We will automatically create your data pipelines and retrain your models. We use generative modeling to produce recommendations that means even with very little data about a particular user/item you won't have a cold start.
  • 46
    ChatGPT

    ChatGPT

    OpenAI

    ChatGPT is an AI-powered conversational assistant developed by OpenAI that helps users with writing, learning, brainstorming, coding, and more. It is free to use with easy access via web and apps on multiple devices. Users can interact through typing or voice to get answers, generate creative content, summarize information, and automate tasks. The platform supports various use cases, from casual questions to complex research and coding help. ChatGPT offers multiple subscription plans, including Free, Plus, and Pro, with increasing access to advanced AI models and features. It is designed to boost productivity and creativity for individuals, students, professionals, and developers alike.
  • 47
    PyTorch

    PyTorch

    PyTorch

    Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.
  • 48
    PaddlePaddle

    PaddlePaddle

    PaddlePaddle

    PaddlePaddle is based on Baidu's years of deep learning technology research and business applications and integrates deep learning core framework, basic model library, end-to-end development kit, tool components and service platform. It was officially open-sourced in 2016 and is a comprehensive An industry-level deep learning platform with open source, leading technology, and complete functions. The flying paddle is derived from industrial practice and has always been committed to in-depth integration with the industry. At present, flying paddles have been widely used in industry, agriculture, and service industries, serving 3.2 million developers, and working with partners to help more and more industries complete AI empowerment.
  • 49
    NVIDIA NGC
    NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI.
  • 50
    Clarifai

    Clarifai

    Clarifai

    Clarifai is a leading AI platform for modeling image, video, text and audio data at scale. Our platform combines computer vision, natural language processing and audio recognition as building blocks for developing better, faster and stronger AI. We help our customers create innovative solutions for visual search, content moderation, aerial surveillance, visual inspection, intelligent document analysis, and more. The platform comes with the broadest repository of pre-trained, out-of-the-box AI models built with millions of inputs and context. Our models give you a head start; extending your own custom AI models. Clarifai Community builds upon this and offers 1000s of pre-trained models and workflows from Clarifai and other leading AI builders. Users can build and share models with other community members. Founded in 2013 by Matt Zeiler, Ph.D., Clarifai has been recognized by leading analysts, IDC, Forrester and Gartner, as a leading computer vision AI platform. Visit clarifai.com