[go: up one dir, main page]

Compare the Top Large Language Models in Africa as of November 2025 - Page 9

  • 1
    Grok 4 Heavy
    Grok 4 Heavy is the most powerful AI model offered by xAI, designed as a multi-agent system to deliver cutting-edge reasoning and intelligence. Built on the Colossus supercomputer, it achieves a 50% score on the challenging HLE benchmark, outperforming many competitors. This advanced model supports multimodal inputs including text and images, with plans to add video capabilities. Grok 4 Heavy targets power users such as developers, researchers, and technical enthusiasts who require top-tier AI performance. Access is provided through the premium “SuperGrok Heavy” subscription priced at $300 per month. xAI has enhanced moderation and removed problematic system prompts to ensure responsible and ethical AI use.
  • 2
    GLM-4.5
    GLM‑4.5 is Z.ai’s latest flagship model in the GLM family, engineered with 355 billion total parameters (32 billion active) and a companion GLM‑4.5‑Air variant (106 billion total, 12 billion active) to unify advanced reasoning, coding, and agentic capabilities in one architecture. It operates in a “thinking” mode for complex, multi‑step reasoning and tool use, and a “non‑thinking” mode for instant responses, supporting up to 128 K token context length and native function calling. Available via the Z.ai chat platform and API, with open weights on HuggingFace and ModelScope, GLM‑4.5 ingests diverse inputs to solve general problem‑solving, common‑sense reasoning, coding from scratch or within existing projects, and end‑to‑end agent workflows such as web browsing and slide generation. Built on a Mixture‑of‑Experts design with loss‑free balance routing, grouped‑query attention, and an MTP layer for speculative decoding, it delivers enterprise‑grade performance.
  • 3
    Claude Opus 4.1
    Claude Opus 4.1 is an incremental upgrade to Claude Opus 4 that boosts coding, agentic reasoning, and data-analysis performance without changing deployment complexity. It raises coding accuracy to 74.5 percent on SWE-bench Verified and sharpens in-depth research and detailed tracking for agentic search tasks. GitHub reports notable gains in multi-file code refactoring, while Rakuten Group highlights its precision in pinpointing exact corrections within large codebases without introducing bugs. Independent benchmarks show about a one-standard-deviation improvement on junior developer tests compared to Opus 4, mirroring major leaps seen in prior Claude releases. Opus 4.1 is available now to paid Claude users, in Claude Code, and via the Anthropic API (model ID claude-opus-4-1-20250805), as well as through Amazon Bedrock and Google Cloud Vertex AI, and integrates seamlessly into existing workflows with no additional setup beyond selecting the new model.
  • 4
    GPT-5 pro
    GPT-5 Pro is OpenAI’s most advanced AI model, designed to tackle the most complex and challenging tasks with extended reasoning capabilities. It builds on GPT-5’s unified architecture, using scaled, efficient parallel compute to provide highly comprehensive and accurate responses. GPT-5 Pro achieves state-of-the-art performance on difficult benchmarks like GPQA, excelling in areas such as health, science, math, and coding. It makes significantly fewer errors than earlier models and delivers responses that experts find more relevant and useful. The model automatically balances quick answers and deep thinking, allowing users to get expert-level insights efficiently. GPT-5 Pro is available to Pro subscribers and powers some of the most demanding applications requiring advanced intelligence.
  • 5
    GPT-5 thinking
    GPT-5 Thinking is the deeper reasoning mode within the GPT-5 unified AI system, designed to tackle complex, open-ended problems that require extended cognitive effort. It works alongside the faster GPT-5 model, dynamically engaging when queries demand more detailed analysis and thoughtful responses. This mode significantly reduces hallucinations and improves factual accuracy, producing more reliable answers on challenging topics like science, math, coding, and health. GPT-5 Thinking is also better at recognizing its own limitations, communicating clearly when tasks are impossible or underspecified. It incorporates advanced safety features to minimize harmful outputs and provide nuanced, helpful answers even in ambiguous or sensitive contexts. Available to all users, it helps bring expert-level intelligence to everyday and advanced use cases alike.
  • 6
    Gemini 3.0 Pro
    Gemini 3.0 Pro represents the next-generation AI model from Google DeepMind, designed as a multimodal powerhouse capable of processing text, images, audio, and video with high precision. It features an extended context window and enhanced reasoning ability, enabling the model to tackle long-form tasks and complex workflows more effectively than prior versions. Early leaks indicate it may include separate performance-optimized variants, such as a “Flash” mode for speed and a “Pro” mode for deeper reasoning, to accommodate developers and enterprises. The rollout of Gemini 3.0 Pro is currently in preview with select users via Gemini CLI, AI Studio, and Vertex AI, preparing for broader availability. It delivers improved accuracy, creativity, and contextual understanding for a wide range of applications, from content creation to data analysis. As a result, organizations seeking advanced AI support across creative design, software engineering, research visualization, and enterprise-scale.
    Starting Price: $19.99/month
  • 7
    MAI-1-preview

    MAI-1-preview

    Microsoft

    MAI-1 Preview is Microsoft AI’s first end-to-end trained foundation model, built entirely in-house as a mixture-of-experts architecture. Pre-trained and post-trained on approximately 15,000 NVIDIA H100 GPUs, it is designed to follow instructions and generate helpful, responsive text for everyday user queries, representing a prototype of future Copilot capabilities. Now available for public testing on LMArena, MAI-1 Preview delivers an early glimpse into the platform’s trajectory, with plans to roll out select text-based applications within Copilot over the coming weeks to gather user feedback and refine performance. Microsoft reinforces that it will continue combining its own models, partner models, and developments from the open-source community to flexibly power experiences across millions of unique interactions each day.
  • 8
    Claude Sonnet 4.5
    Claude Sonnet 4.5 is Anthropic’s latest frontier model, designed to excel in long-horizon coding, agentic workflows, and intensive computer use while maintaining safety and alignment. It achieves state-of-the-art performance on the SWE-bench Verified benchmark (for software engineering) and leads on OSWorld (a computer use benchmark), with the ability to sustain focus over 30 hours on complex, multi-step tasks. The model introduces improvements in tool handling, memory management, and context processing, enabling more sophisticated reasoning, better domain understanding (from finance and law to STEM), and deeper code comprehension. It supports context editing and memory tools to sustain long conversations or multi-agent tasks, and allows code execution and file creation within Claude apps. Sonnet 4.5 is deployed at AI Safety Level 3 (ASL-3), with classifiers protecting against inputs or outputs tied to risky domains, and includes mitigations against prompt injection.
  • 9
    GLM-4.6

    GLM-4.6

    Zhipu AI

    GLM-4.6 advances upon its predecessor with stronger reasoning, coding, and agentic capabilities: it demonstrates clear improvements in inferential performance, supports tool use during inference, and more effectively integrates into agent frameworks. In benchmark tests spanning reasoning, coding, and agents, GLM-4.6 outperforms GLM-4.5 and shows competitive strength against models such as DeepSeek-V3.2-Exp and Claude Sonnet 4, though it still trails Claude Sonnet 4.5 in pure coding performance. In real-world tests using an extended “CC-Bench” suite across front-end development, tool building, data analysis, and algorithmic tasks, GLM-4.6 beats GLM-4.5 and approaches parity with Claude Sonnet 4, winning ~48.6% of head-to-head comparisons, while also achieving ~15% better token efficiency. GLM-4.6 is available via the Z.ai API, and developers can integrate it as an LLM backend or agent core using the platform’s API.
  • 10
    GPT-5.1 Instant
    GPT-5.1 Instant is a high-performance AI model designed for everyday users that combines speed, responsiveness, and improved conversational warmth. The model uses adaptive reasoning to instantly select how much computation is required for a task, allowing it to deliver fast answers without sacrificing understanding. It emphasizes stronger instruction-following, enabling users to give precise directions and expect consistent compliance. The model also introduces richer personality controls so chat tone can be set to Default, Friendly, Professional, Candid, Quirky, or Efficient, with experiments in deeper voice modulation. Its core value is to make interactions feel more natural and less robotic while preserving high intelligence across writing, coding, analysis, and reasoning. GPT-5.1 Instant routes user requests automatically from the base interface, with the system choosing whether this variant or the deeper “Thinking” model is applied.
  • 11
    GPT-5.1 Thinking
    GPT-5.1 Thinking is the advanced reasoning model variant in the GPT-5.1 series, designed to more precisely allocate “thinking time” based on prompt complexity, responding faster to simpler requests and spending more effort on difficult problems. On a representative task distribution, it is roughly twice as fast on the fastest tasks and twice as slow on the slowest compared with its predecessor. Its responses are crafted to be clearer, with less jargon and fewer undefined terms, making deep analytical work more accessible and understandable. The model dynamically adjusts its reasoning depth, achieving a better balance between speed and thoroughness, particularly when dealing with technical concepts or multi-step questions. By combining high reasoning capacity with improved clarity, GPT-5.1 Thinking offers a powerful tool for tackling complex tasks, such as detailed analysis, coding, research, or technical explanations, while reducing unnecessary latency for routine queries.
  • 12
    BLOOM

    BLOOM

    BigScience

    BLOOM is an autoregressive Large Language Model (LLM), trained to continue text from a prompt on vast amounts of text data using industrial-scale computational resources. As such, it is able to output coherent text in 46 languages and 13 programming languages that is hardly distinguishable from text written by humans. BLOOM can also be instructed to perform text tasks it hasn't been explicitly trained for, by casting them as text generation tasks.
  • 13
    NVIDIA NeMo Megatron
    NVIDIA NeMo Megatron is an end-to-end framework for training and deploying LLMs with billions and trillions of parameters. NVIDIA NeMo Megatron, part of the NVIDIA AI platform, offers an easy, efficient, and cost-effective containerized framework to build and deploy LLMs. Designed for enterprise application development, it builds upon the most advanced technologies from NVIDIA research and provides an end-to-end workflow for automated distributed data processing, training large-scale customized GPT-3, T5, and multilingual T5 (mT5) models, and deploying models for inference at scale. Harnessing the power of LLMs is made easy through validated and converged recipes with predefined configurations for training and inference. Customizing models is simplified by the hyperparameter tool, which automatically searches for the best hyperparameter configurations and performance for training and inference on any given distributed GPU cluster configuration.
  • 14
    ALBERT

    ALBERT

    Google

    ALBERT is a self-supervised Transformer model that was pretrained on a large corpus of English data. This means it does not require manual labelling, and instead uses an automated process to generate inputs and labels from raw texts. It is trained with two distinct objectives in mind. The first is Masked Language Modeling (MLM), which randomly masks 15% of words in the input sentence and requires the model to predict them. This technique differs from RNNs and autoregressive models like GPT as it allows the model to learn bidirectional sentence representations. The second objective is Sentence Ordering Prediction (SOP), which entails predicting the ordering of two consecutive segments of text during pretraining.
  • 15
    ERNIE 3.0 Titan
    Pre-trained language models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. GPT-3 has shown that scaling up pre-trained language models can further exploit their enormous potential. A unified framework named ERNIE 3.0 was recently proposed for pre-training large-scale knowledge enhanced models and trained a model with 10 billion parameters. ERNIE 3.0 outperformed the state-of-the-art models on various NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. Furthermore, We design a self-supervised adversarial loss and a controllable language modeling loss to make ERNIE 3.0 Titan generate credible and controllable texts.
  • 16
    EXAONE
    EXAONE is a large language model developed by LG AI Research with the goal of nurturing "Expert AI" in multiple domains. The Expert AI Alliance was formed as a collaborative effort among leading companies in various fields to advance the capabilities of EXAONE. Partner companies within the alliance will serve as mentors, providing skills, knowledge, and data to help EXAONE gain expertise in relevant domains. EXAONE, described as being akin to a college student who has completed general elective courses, requires additional intensive training to become an expert in specific areas. LG AI Research has already demonstrated EXAONE's abilities through real-world applications, such as Tilda, an AI human artist that debuted at New York Fashion Week, as well as AI applications for summarizing customer service conversations and extracting information from complex academic papers.
  • 17
    Jurassic-1

    Jurassic-1

    AI21 Labs

    Jurassic-1 models come in two sizes, where the Jumbo version, at 178B parameters, is the largest and most sophisticated language model ever released for general use by developers. AI21 Studio is currently in open beta, allowing anyone to sign up and immediately start querying Jurassic-1 using our API and interactive web environment. Our mission at AI21 Labs is to fundamentally reimagine the way humans read and write by introducing machines as thought partners, and the only way we can achieve this is if we take on this challenge together. We’ve been researching language models since our Mesozoic Era (aka 2017 😉). Jurassic-1 builds on this research, and it is the first generation of models we’re making available for widespread use.
  • 18
    Alpaca

    Alpaca

    Stanford Center for Research on Foundation Models (CRFM)

    Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model.
  • 19
    GradientJ

    GradientJ

    GradientJ

    GradientJ provides everything you need to build large language model applications in minutes and manage them forever. Discover and maintain the best prompts by saving versions and comparing them across benchmark examples. Orchestrate and manage complex applications by chaining prompts and knowledge bases into complex APIs. Enhance the accuracy of your models by integrating them with your proprietary data.
  • 20
    PanGu Chat
    PanGu Chat is an AI chatbot developed by Huawei. PanGu Chat can converse like a human and answer any questions like ChatGPT does.
  • 21
    LTM-1

    LTM-1

    Magic AI

    Magic’s LTM-1 enables 50x larger context windows than transformers. Magic's trained a Large Language Model (LLM) that’s able to take in the gigantic amounts of context when generating suggestions. For our coding assistant, this means Magic can now see your entire repository of code. Larger context windows can allow AI models to reference more explicit, factual information and their own action history. We hope to be able to utilize this research to improve reliability and coherence.
  • 22
    Reka

    Reka

    Reka

    Our enterprise-grade multimodal assistant carefully designed with privacy, security, and efficiency in mind. We train Yasa to read text, images, videos, and tabular data, with more modalities to come. Use it to generate ideas for creative tasks, get answers to basic questions, or derive insights from your internal data. Generate, train, compress, or deploy on-premise with a few simple commands. Use our proprietary algorithms to personalize our model to your data and use cases. We design proprietary algorithms involving retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to tune our model on your datasets.
  • 23
    Samsung Gauss
    Samsung Gauss is a new AI model developed by Samsung Electronics. It is a large language model (LLM) that has been trained on a massive dataset of text and code. Samsung Gauss is able to generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Samsung Gauss is still under development, but it has already learned to perform many kinds of tasks, including: Following instructions and completing requests thoughtfully. Answering your questions in a comprehensive and informative way, even if they are open ended, challenging, or strange. Generating different creative text formats, like poems, code, scripts, musical pieces, email, letters, etc. Here are some examples of what Samsung Gauss can do: Translation: Samsung Gauss can translate text between many different languages, including English, French, German, Spanish, Chinese, Japanese, and Korean. Coding: Samsung Gauss can generate code.
  • 24
    Flip AI

    Flip AI

    Flip AI

    Our large language model (LLM) can understand and reason through any and all observability data, including unstructured data, so that you can rapidly restore software and systems to health. Our LLM has been trained to understand and mitigate thousands of critical incidents, across every type of architecture imaginable – giving enterprise developers access to the world’s best debugging expert. Our LLM was built to solve the hardest part of the software engineering process – debugging production incidents. Our model requires no training and works on any observability data system. It can learn based on feedback and finetune based on past incidents and patterns in your environment while keeping your data in your boundaries. This means you are resolving critical incidents using Flip in seconds.
  • 25
    Sarvam AI

    Sarvam AI

    Sarvam AI

    We are developing efficient large language models for India's diverse linguistic culture and enabling new GenAI applications through bespoke enterprise models. We are building an enterprise-grade platform that lets you develop and evaluate your company’s GenAI apps. We believe in the power of open-source to accelerate AI innovation and will be contributing to open-source models and datasets, as well be leading efforts for large-scale data curation in public-good space. We are a dynamic and close-knit team of AI pioneers, blending expertise in research, engineering, product design, and business operations. Our diverse backgrounds unite under a shared commitment to excellence in science and the creation of societal impact. We foster an environment where tackling complex tech challenges is not just a job, but a passion.
  • 26
    VideoPoet
    VideoPoet is a simple modeling method that can convert any autoregressive language model or large language model (LLM) into a high-quality video generator. It contains a few simple components. An autoregressive language model learns across video, image, audio, and text modalities to autoregressively predict the next video or audio token in the sequence. A mixture of multimodal generative learning objectives are introduced into the LLM training framework, including text-to-video, text-to-image, image-to-video, video frame continuation, video inpainting and outpainting, video stylization, and video-to-audio. Furthermore, such tasks can be composed together for additional zero-shot capabilities. This simple recipe shows that language models can synthesize and edit videos with a high degree of temporal consistency.
  • 27
    Aya

    Aya

    Cohere AI

    Aya is a new state-of-the-art, open-source, massively multilingual, generative large language research model (LLM) covering 101 different languages — more than double the number of languages covered by existing open-source models. Aya helps researchers unlock the powerful potential of LLMs for dozens of languages and cultures largely ignored by most advanced models on the market today. We are open-sourcing both the Aya model, as well as the largest multilingual instruction fine-tuned dataset to-date with a size of 513 million covering 114 languages. This data collection includes rare annotations from native and fluent speakers all around the world, ensuring that AI technology can effectively serve a broad global audience that have had limited access to-date.
  • 28
    Tune AI

    Tune AI

    NimbleBox

    Leverage the power of custom models to build your competitive advantage. With our enterprise Gen AI stack, go beyond your imagination and offload manual tasks to powerful assistants instantly – the sky is the limit. For enterprises where data security is paramount, fine-tune and deploy generative AI models on your own cloud, securely.
  • 29
    Command R

    Command R

    Cohere AI

    Command’s model outputs come with clear citations that mitigate the risk of hallucinations and enable the surfacing of additional context from the source materials. Command can write product descriptions, help draft emails, suggest example press releases, and much more. Ask Command multiple questions about a document to assign a category to the document, extract a piece of information, or answer a general question about the document. Where answering a few questions about a document can save you a few minutes, doing it for thousands of documents can save a company years. This family of scalable models balances high efficiency with strong accuracy to enable enterprises to move from proof of concept into production-grade AI.
  • 30
    CodeGemma
    CodeGemma is a collection of powerful, lightweight models that can perform a variety of coding tasks like fill-in-the-middle code completion, code generation, natural language understanding, mathematical reasoning, and instruction following. CodeGemma has 3 model variants, a 7B pre-trained variant that specializes in code completion and generation from code prefixes and/or suffixes, a 7B instruction-tuned variant for natural language-to-code chat and instruction following; and a state-of-the-art 2B pre-trained variant that provides up to 2x faster code completion. Complete lines, and functions, and even generate entire blocks of code, whether you're working locally or using Google Cloud resources. Trained on 500 billion tokens of primarily English language data from web documents, mathematics, and code, CodeGemma models generate code that's not only more syntactically correct but also semantically meaningful, reducing errors and debugging time.