Sparse Attention is OpenAI’s code release for the Sparse Transformer model, introduced in the paper Generating Long Sequences with Sparse Transformers. It explores how modifying the self-attention mechanism with sparse patterns can reduce the quadratic scaling of standard transformers, making it possible to model much longer sequences efficiently. The repository provides implementations of sparse attention layers, training code, and evaluation scripts for benchmark datasets. It highlights both fixed and learnable sparsity patterns that trade off computational cost and model expressiveness. By enabling tractable training on longer contexts, the project opened the door to applications in large-scale text and image generation. Though archived, it remains a key reference for efficient transformer research, influencing many later architectures that aim to extend sequence length while reducing compute.

Features

  • Reference implementation of sparse transformer attention
  • Efficient handling of long sequences by reducing quadratic cost
  • Support for fixed and learnable sparse patterns
  • Training and evaluation pipelines for benchmarks
  • Example configs for reproducing paper experiments
  • Foundation for later efficient transformer research

Project Samples

Project Activity

See All Activity >

Categories

Libraries

Follow Sparse Attention

Sparse Attention Web Site

You Might Also Like
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

The database for AI-powered applications.

MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Sparse Attention!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Programming Language

Python

Related Categories

Python Libraries

Registered

2025-10-04