[go: up one dir, main page]

Search Results for "visual neural networks" - Page 6

Showing 579 open source projects for "visual neural networks"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • We help you deliver Virtual and Hybrid Events using our Award Winning end-to-end Event Management Platform Icon
    We help you deliver Virtual and Hybrid Events using our Award Winning end-to-end Event Management Platform

    Designed by event planners for event planners, the EventsAIR platform gives you the ability to manage your event, conference, meeting or function with

    EventsAIR have been anticipating and responding to the ever-changing event industry needs for over 30 years, providing innovative solutions that empower event organizers to create successful events around the globe.
    Learn More
  • 1
    SciMLBenchmarks.jl

    SciMLBenchmarks.jl

    Benchmarks for scientific machine learning (SciML) software

    SciMLBenchmarks.jl holds webpages, pdfs, and notebooks showing the benchmarks for the SciML Scientific Machine Learning Software ecosystem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DeepH-pack

    DeepH-pack

    Deep neural networks for density functional theory Hamiltonian

    DeepH-pack is the official implementation of the DeepH (Deep Hamiltonian) method described in the paper Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation and in the Research Briefing. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA and will support HONPAS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    finetuner

    finetuner

    Task-oriented finetuning for better embeddings on neural search

    ...Create high-quality embeddings for semantic search, visual similarity search, cross-modal text image search, recommendation systems, clustering, duplication detection, anomaly detection, or other uses. Bring considerable improvements to model performance, making the most out of as little as a few hundred training samples, and finish fine-tuning in as little as an hour.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Audio Webui

    Audio Webui

    A webui for different audio related Neural Networks

    Audio Webui is a Gradio-based web user interface that unifies a wide range of audio-related neural networks under a single, accessible front end. It is designed as an “all-in-one” environment where users can experiment with text-to-speech, voice cloning, generative music, and other neural audio models without writing boilerplate code. The project supports multiple back-end models and toolchains (such as Bark, RVC, AudioLDM, Audiocraft, and other text-to-audio or voice-cloning tools), exposing them through a consistent UI for inference and experimentation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dragonfly | An In-Memory Data Store without Limits Icon
    Dragonfly | An In-Memory Data Store without Limits

    Dragonfly Cloud is engineered to handle the heaviest data workloads with the strictest security requirements.

    Dragonfly is a drop-in Redis replacement that is designed for heavy data workloads running on modern cloud hardware. Migrate in less than a day and experience up to 25X the performance on half the infrastructure.
    Learn More
  • 5
    Nougat

    Nougat

    Implementation of Nougat Neural Optical Understanding

    Nougat is a multi-modal generative modeling framework that bridges vision and text modalities with structured generation control (e.g. layout, scene composition) rather than treating images as flat contexts. It combines object-centric modules with transformer-based reasoning to propose, refine, and render scenes in a generative pipeline. The architecture allows you to specify or prompt a layout (which objects should be where) and then the model fills in appearance, context, lighting, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for graph deep learning. Spektral also includes lots of utilities for representing, manipulating, and transforming graphs in your graph deep learning projects. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    AI Upscaler for Blender

    AI Upscaler for Blender

    AI Upscaler for Blender using Real-ESRGAN

    ...Blender renders a low-resolution image. The Real-ESRGAN Upscaler upscales the low-resolution image to a higher-resolution image. Real-ESRGAN is a deep learning upscaler that uses neural networks to achieve excellent results by adding in detail when it upscales.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    hloc

    hloc

    Visual localization made easy with hloc

    This is hloc, a modular toolbox for state-of-the-art 6-DoF visual localization. It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    RY GeoIP 3

    RY GeoIP 3

    User-friendly network & geolocation tools, APIs integration and more!

    RY GeoIP 3 is a powerful application that combines network and geolocation tools for comprehensive analysis. With its user-friendly interface and integration with Google Maps API and API Ninja DNS Lookups service, you can perform a wide range of operations, from geolocation lookups and ping tests to DNS analysis, traceroute, SSL certificate inspection, header data retrieval, and open port scanning. The ability to save data as PDFs and maps as images further enhances the utility of the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • AI Powered Global HCM for the Evolving World of Work Icon
    AI Powered Global HCM for the Evolving World of Work

    For Start-ups, SME's, Large Enterprise

    Darwinbox is a new-age & disruptive mobile-first, cloud-based HRMS platform built for the large enterprises to attract, engage and nurture their most critical resource - talent. It is an end-to-end integrated HR system that aids in streamlining activities across the employee lifecycle (Hire to Retire). Our powerful enterprise product features are built with a clear focus on intuitiveness and scalability, with standards of best in class consumer apps. Darwinbox’s motto is to engage, empower, and inspire employees on one side in addition to automating and simplifying all HR processes for the enterprise on the other. Over 350+ leading enterprises with 850k users manage their entire employee lifecycle on this unified platform.
    Learn More
  • 10
    OpenNN - Open Neural Networks Library

    OpenNN - Open Neural Networks Library

    Machine learning algorithms for advanced analytics

    OpenNN is a software library written in C++ for advanced analytics. It implements neural networks, the most successful machine learning method. Some typical applications of OpenNN are business intelligence (customer segmentation, churn prevention…), health care (early diagnosis, microarray analysis…) and engineering (performance optimization, predictive maitenance…). OpenNN does not deal with computer vision or natural language processing.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 11
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 21 This Week
    Last Update:
    See Project
  • 13
    BloodHound Legacy

    BloodHound Legacy

    Six Degrees of Domain Admin

    BloodHound Legacy is the deprecated open‑source version of the BloodHound Active Directory attack path analysis tool. It uses graph theory to model and visualize privileged relationships in AD, Entra ID, and Azure environments. Security professionals use it to enumerate domain privilege escalation paths, misconfigurations, and attack surfaces in corporate networks
    Downloads: 13 This Week
    Last Update:
    See Project
  • 14
    Paddle Quantum

    Paddle Quantum

    Paddle Quantum

    Paddle Quantum (量桨) is the world's first cloud-integrated quantum machine learning platform based on Baidu PaddlePaddle. It supports the building and training of quantum neural networks, making PaddlePaddle the first deep-learning framework in China. Paddle Quantum is feature-rich and easy to use. It provides comprehensive API documentation and tutorials help users get started right away. Paddle Quantum aims at establishing a bridge between artificial intelligence (AI) and quantum computing (QC). It has been utilized for developing several quantum machine learning applications. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Neural Network Visualization

    Neural Network Visualization

    Project for processing neural networks and rendering to gain insights

    nn_vis is a minimalist visualization tool for neural networks written in Python using OpenGL and Pygame. It provides an interactive, graphical representation of how data flows through neural network layers, offering a unique educational experience for those new to deep learning or looking to explain it visually. By animating input, weights, activations, and outputs, the tool demystifies neural network operations and helps users intuitively grasp complex concepts. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ManimML

    ManimML

    ManimML is a project focused on providing animations

    ManimML is a project focused on providing animations and visualizations of common machine-learning concepts with the Manim Community Library. Please check out our paper. We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine-learning concepts. Additionally, we want to provide a set of abstractions that allow users to focus on explanations instead of software engineering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DataMelt

    DataMelt

    Computation and Visualization environment

    ...DMelt can be used to plot functions and data in 2D and 3D, perform statistical tests, data mining, numeric computations, function minimization, linear algebra, solving systems of linear and differential equations. Linear, non-linear and symbolic regression are also available. Neural networks and various data-manipulation methods are integrated using powerful Java API. Elements of symbolic computations using Octave/Matlab scripting are supported.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    Proteus Model Builder

    GUI for training of neural network models for GuitarML Proteus

    GUI for easier installation and training of neural network models for guitar amplifiers and pedals, based on the GuitarML Proteus models. These are usable for Proteus, Chowdhury-DSP BYOD and even NeuralPi, on all platforms incl. Linux and RaspberryPi. What is this? GuitarML's work on Proteus, NeuralPi and Proteusboard (hardware) is amazing. https://github.com/GuitarML Yet, it is not easy to wrap your head around if you are not familiar with programming, AI, machine learning, neuronal networks. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 21
    Lyra

    Lyra

    A Very Low-Bitrate Codec for Speech Compression

    lyra is a neural audio codec designed to deliver intelligible, natural-sounding speech at extremely low bitrates, making real-time communication viable on constrained networks. It replaces hand-engineered codecs with learned models that capture speech characteristics more efficiently and reconstruct waveforms with a neural vocoder. The system targets mobile-class hardware, balancing latency and quality so it can run in real-time on phones.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    HealthFusion

    HealthFusion

    AI Disease Detections System

    ...HealthFusion is a user-friendly app that can be accessed from the comfort of homes, making it accessible to everyone. The use of advanced technologies such as Convolutional Neural Networks, Random Forest, and XGBoost allows for accurate and timely detection of diseases, leading to better patient outcomes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    PTDCH is a server-software for Neo-Modus Direct Connect Peer-To-Peer sharing networks written in MS Visual Basic 6, based on SDCH/DDCH. It is a HubSoft dedicated to all lovers of VB, VBscripts and Jscripts. It is "Full" featured hubsoft scripting and p
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Algorithms Math Models

    Algorithms Math Models

    MATLAB implementations of algorithms

    ...The repository gathers implementations and case studies across many topics commonly used in contest solutions: optimization (linear, integer, goal and nonlinear programming), heuristic and metaheuristic methods (simulated annealing, genetic algorithms, immune algorithms), neural networks and time-series methods, interpolation and regression, graph theory, cellular automata, grey systems, fuzzy models, partial/ordinary differential equations, and multivariate analysis, among others. The codebase is organized into topic folders (e.g., HeuristicAlgorithm, IntegerProgramming, NeuralNetwork, TimeSeries) and includes dozens of worked examples and links to textbook/source materials that the author used to assemble the collection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Jraph

    Jraph

    A Graph Neural Network Library in Jax

    Jraph (pronounced “giraffe”) is a lightweight JAX library developed by Google DeepMind for building and experimenting with graph neural networks (GNNs). It provides an efficient and flexible framework for representing, manipulating, and training models on graph-structured data. The core of Jraph is the GraphsTuple data structure, which enables users to define graphs with arbitrary node, edge, and global attributes, and to batch variable-sized graphs efficiently for JAX’s just-in-time compilation. ...
    Downloads: 0 This Week
    Last Update:
    See Project