[go: up one dir, main page]

Search Results for "neural network vb6" - Page 5

Showing 534 open source projects for "neural network vb6"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Haystack is a modern, engaging, and intuitive intranet platform that employees actually use. Icon
    Haystack is a modern, engaging, and intuitive intranet platform that employees actually use.

    You Deserve the Best Intranet Experience

    With customizable iOS and Android mobile apps, Slack and Microsoft Teams integrations, and an intuitive design employees love, Haystack brings an outstanding digital employee experience to your entire workforce, no matter where their work takes them.
    Learn More
  • 1
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 21 This Week
    Last Update:
    See Project
  • 3

    NAM-Runner

    Batch file to install and run NAM (neural-amp-modeler) easily.

    A Windows 10 batch file, that installs and runs the NAM model trainer (neural-amp-modeler) by Steven Atkinson right into the GUI application. Fully automated. Custom one-time installation of everything you need to train neural network models of guitar amps and more for the NAM VST plugin, no Conda required. Runs as a launcher afterwards. Portable installation. New pyTorch inclues CUDA runtime for fast Nvidia GPU support.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    ManimML

    ManimML

    ManimML is a project focused on providing animations

    ManimML is a project focused on providing animations and visualizations of common machine-learning concepts with the Manim Community Library. Please check out our paper. We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine-learning concepts. Additionally, we want to provide a set of abstractions that allow users to focus on explanations instead of software engineering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and manage the email signature you need Icon
    Create and manage the email signature you need

    For companies and organizations that need an email signature solution

    With WiseStamp it’s easy to unify your brand and turn your emails into a powerful marketing tool. Get the most out of your emails with a professionally designed custom email signature.
    Learn More
  • 5

    Proteus Model Builder

    GUI for training of neural network models for GuitarML Proteus

    GUI for easier installation and training of neural network models for guitar amplifiers and pedals, based on the GuitarML Proteus models. These are usable for Proteus, Chowdhury-DSP BYOD and even NeuralPi, on all platforms incl. Linux and RaspberryPi. What is this? GuitarML's work on Proteus, NeuralPi and Proteusboard (hardware) is amazing. https://github.com/GuitarML Yet, it is not easy to wrap your head around if you are not familiar with programming, AI, machine learning, neuronal networks. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 6
    NeuMan

    NeuMan

    Neural Human Radiance Field from a Single Video (ECCV 2022)

    NeuMan is a reference implementation that reconstructs both an animatable human and its background scene from a single monocular video using neural radiance fields. It supports novel view and novel pose synthesis, enabling compositional results like transferring reconstructed humans into new scenes. The pipeline separates human/body and environment, learning consistent geometry and appearance to support animation. Demos showcase sequences such as dance and handshake, and the code provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Algorithms Math Models

    Algorithms Math Models

    MATLAB implementations of algorithms

    Algorithms_MathModels is a large MATLAB collection of algorithms and solved examples targeted at students and teams preparing for mathematical modeling competitions (national and international contests like MCM/ICM). The repository gathers implementations and case studies across many topics commonly used in contest solutions: optimization (linear, integer, goal and nonlinear programming), heuristic and metaheuristic methods (simulated annealing, genetic algorithms, immune algorithms), neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    ...Factorization-Machine and it’s variants are widely used to learn the low-order feature interaction. High-order Extractor learns feature combination through complex neural network functions like MLP, Cross Net, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • IT Asset Management (ITAM) Software Icon
    IT Asset Management (ITAM) Software

    Supercharge Your IT Assets, the Easy Way

    Drowning in misplaced IT assets, compliance headaches, and shadow IT? Navigate to clarity with an intuitive IT Asset Management solution. Experience crisp visibility, effortless control, and unshakable security – all while freeing up your budget with optimized software licenses. The best part? It’s easy.
    Learn More
  • 10
    Darknet YOLO

    Darknet YOLO

    Real-Time Object Detection for Windows and Linux

    This is YOLO-v3 and v2 for Windows and Linux. YOLO (You only look once) is a state-of-the-art, real-time object detection system of Darknet, an open source neural network framework in C. YOLO is extremely fast and accurate. It uses a single neural network to divide a full image into regions, and then predicts bounding boxes and probabilities for each region. This project is a fork of the original Darknet project.
    Downloads: 33 This Week
    Last Update:
    See Project
  • 11
    DeepMind Educational Resources

    DeepMind Educational Resources

    DeepMind's repo of educational notebooks for learning AI and research

    Educational is an open collection of interactive tutorials created by Google DeepMind to make the fundamentals of machine learning and artificial intelligence accessible to learners of all backgrounds. The repository provides hands-on, beginner-friendly resources that introduce essential AI concepts through Google Colab notebooks, combining intuitive explanations with executable code. The tutorials cover a broad range of topics—from foundational Python programming and data handling to...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Jraph

    Jraph

    A Graph Neural Network Library in Jax

    Jraph (pronounced “giraffe”) is a lightweight JAX library developed by Google DeepMind for building and experimenting with graph neural networks (GNNs). It provides an efficient and flexible framework for representing, manipulating, and training models on graph-structured data. The core of Jraph is the GraphsTuple data structure, which enables users to define graphs with arbitrary node, edge, and global attributes, and to batch variable-sized graphs efficiently for JAX’s just-in-time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Darknet

    Darknet

    Convolutional Neural Networks

    Darknet is an open source neural network framework written in C and CUDA, developed by Joseph Redmon. It is best known as the original implementation of the YOLO (You Only Look Once) real-time object detection system. Darknet is lightweight, fast, and easy to compile, making it suitable for research and production use. The repository provides pre-trained models, configuration files, and tools for training custom object detection models.
    Downloads: 42 This Week
    Last Update:
    See Project
  • 14
    lauetoolsnn

    lauetoolsnn

    LaueNN- neural network routine to index Laue patterns

    An autonomous feed-forward neural network (FFNN) model to predict the HKL in single/multi-grain/multi-phase Laue patterns with high efficiency and accuracy is introduced.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Auto-PyTorch

    Auto-PyTorch

    Automatic architecture search and hyperparameter optimization

    While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, another trend in AutoML is to focus on neural architecture search. To bring the best of these two worlds together, we developed Auto-PyTorch, which jointly and robustly optimizes the network architecture and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch is mainly developed to support tabular data (classification, regression) and time series data (forecasting). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    ...These ideas are encapsulated in the new FullyShardedDataParallel (FSDP) wrapper provided by fairscale. Fairseq can be extended through user-supplied plug-ins. Models define the neural network architecture and encapsulate all of the learnable parameters. Criterions compute the loss function given the model outputs and targets. Tasks store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    nlpaug

    nlpaug

    Data augmentation for NLP

    This Python library helps you with augmenting nlp for your machine learning projects. Visit this introduction to understand Data Augmentation in NLP. Augmenter is the basic element of augmentation while Flow is a pipeline to orchestra multi augmenters together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    ConvNeXt

    ConvNeXt

    Code release for ConvNeXt model

    ConvNeXt is a modernized convolutional neural network (CNN) architecture designed to rival Vision Transformers (ViTs) in accuracy and scalability while retaining the simplicity and efficiency of CNNs. It revisits classic ResNet-style backbones through the lens of transformer design trends—large kernel sizes, inverted bottlenecks, layer normalization, and GELU activations—to bridge the performance gap between convolutions and attention-based models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    pyTorch Tutorials

    pyTorch Tutorials

    Build your neural network easy and fast

    pyTorch Tutorials is an open-source collection of hands-on tutorials designed to teach developers how to build neural networks with the PyTorch framework. It covers the fundamentals of PyTorch from basic tensor operations to constructing full neural network models, making it suitable for beginners and intermediate learners alike. The project is structured around clear, executable Python scripts and Jupyter notebooks that demonstrate regression, classification, convolutional networks, recurrent networks, autoencoders, and generative adversarial networks, which gives learners practical exposure to real machine learning tasks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    G2SConverter

    G2SConverter

    Convert models from GoldSource engine to Source engine with AI

    ...A feature of this utility is the ability to improve the quality of textures of models using Upscaling, deblurring, and normal map generating. All operations to improve the quality of textures are performed by neural networks. To improve the quality of the texture, it is first Upscaled using RealESRGAN. The user can select scaling factor: x2, x4 or x8. After the Upscaling procedure, the texture is deblured using the Scale-recurrent Network for Deep Image Deblurring. An example of a processed texture is shown in the following image (parameters used: scaling-factor = 4 and deblur iterations = 4) besides upscaling and debluring the utility also generates normal maps for each texture. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    WaveRNN

    WaveRNN

    WaveRNN Vocoder + TTS

    WaveRNN is a PyTorch implementation of DeepMind’s WaveRNN vocoder, bundled with a Tacotron-style TTS front end to form a complete text-to-speech stack. As a vocoder, WaveRNN models raw audio with a compact recurrent neural network that can generate high-quality waveforms more efficiently than many traditional autoregressive models. The repository includes scripts and code for preprocessing datasets such as LJSpeech, training Tacotron to produce mel spectrograms, training WaveRNN on those spectrograms (with optional GTA data), and finally generating audio. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ruDALL-E

    ruDALL-E

    Generate images from texts. In Russian

    ...The Kandinsky 2.0 model uses the reverse diffusion method and creates colorful images on various topics in a matter of seconds by text query in Russian and other languages. You can even combine different languages within a single query. This neural network has been developed and trained by Sber AI researchers in close collaboration with scientists from Artificial Intelligence Research Institute using joined datasets by Sber AI and SberDevices. Russian text-to-image model that generates images from text. The architecture is the same as ruDALL-E XL. Even more parameters in the new version.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24

    NeuroNet

    Neural network program. Creates and trains neural networks, shows data

    Neural network program. Creates and trains neural networks, shows data.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    Real-ESRGAN ncnn Vulkan

    Real-ESRGAN ncnn Vulkan

    NCNN implementation of Real-ESRGAN

    Real-ESRGAN ncnn Vulkan is an optimized, cross-platform implementation of Real-ESRGAN using the ncnn neural network inference engine and Vulkan for hardware acceleration. Unlike the standard PyTorch-based Real-ESRGAN code, this variant is written in C/C++ and designed to run efficiently on many platforms (including Windows, Linux, and possibly Android) without requiring heavy frameworks like CUDA or Python. It provides command-line tools for upscaling images with selected models, allowing users to specify input/output paths, scaling factors, tile sizes, and model names from a compressed model set, which is particularly helpful for larger images or automated workflows. ...
    Downloads: 67 This Week
    Last Update:
    See Project