[go: up one dir, main page]

Search Results for "neural network training"

Showing 753 open source projects for "neural network training"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Power through agendas and documents, make more informed decisions and conduct board meetings faster. Icon
    Power through agendas and documents, make more informed decisions and conduct board meetings faster.

    For team managers searching for a solution to manage their meetings

    iBabs not only captures the entire decision-making process – it takes all the paperwork out of meetings. iBabs empowers everyone who has ever organized or attended, a meeting. With a seemingly simple app that offers complete control and a comprehensive overview of all those fiddly details. With about 3000 organizations and over 300,000 users, iBabs gives you peace of mind. So you can quickly organize effective meetings, and good decisions can be made with confidence. iBabs didn’t just happen overnight. We started analyzing and simplifying board meeting processes many years ago. We understand all the work that goes into meetings, and how to streamline everything so it all flows smoothly. On any device, confidentially, securely and automatically. Make good decisions with confidence.
    Learn More
  • 1
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    NeuralOperators.jl

    NeuralOperators.jl

    DeepONets, Neural Operators, Physics-Informed Neural Ops in Julia

    Neural operator is a novel deep learning architecture. It learns an operator, which is a mapping between infinite-dimensional function spaces. It can be used to resolve partial differential equations (PDE). Instead of solving by finite element method, a PDE problem can be resolved by training a neural network to learn an operator mapping from infinite-dimensional space (u, t) to infinite-dimensional space f(u, t).
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Axon

    Axon

    Nx-powered Neural Networks

    Training API – An API for quickly training models, inspired by PyTorch Ignite. Axon provides abstractions that enable easy integration while maintaining a level of separation between each component. You should be able to use any of the APIs without dependencies on others. By decoupling the APIs, Axon gives you full control over each aspect of creating and training a neural network.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 4
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • ServiceDesk Plus, a world-class IT and enterprise service management platform Icon
    ServiceDesk Plus, a world-class IT and enterprise service management platform

    Design, automate, deliver, and manage critical IT and business services

    Best in class online service desk software. Offer your customers world-class services with ServiceDesk Plus Cloud, the easy-to-use SaaS service desk software from ManageEngine, the IT management division of Zoho. Track and manage IT tickets efficiently, resolve issues faster, and ensure end-user satisfaction with the cloud-based IT ticketing system used by over 100,000 IT service desks worldwide. Manage the complete life cycle of IT incidents, problems, changes, and projects with out of the box ITIL workflows. Create support SLAs, define escalation levels, and ensure compliance. Automate ticket dispatch, categorization, classification, and assignment based on predefined business rules, and set up notifications and alerts for timely ticket resolution. Reduce walk ins and unnecessary tickets by giving your users more control. Enable end users to access IT services through your service catalog in the self-service portal. Help users create and track tickets and search for solutions.
    Learn More
  • 5
    SentencePiece

    SentencePiece

    Unsupervised text tokenizer for Neural Network-based text generation

    SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabulary size is predetermined prior to the neural model training. SentencePiece implements subword units (e.g., byte-pair-encoding (BPE) [Sennrich et al.]) and unigram language model [Kudo.]) with the extension of direct training from raw sentences. SentencePiece allows us to make a purely end-to-end system that does not depend on language-specific pre/postprocessing. ...
    Downloads: 17 This Week
    Last Update:
    See Project
  • 6
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    Predicting stock prices can be a challenging task as it often does not follow any specific pattern. However, deep neural learning can be used to identify patterns through machine learning. One of the most effective techniques for series forecasting is using LSTM (long short-term memory) networks, which are a type of recurrent neural network (RNN) capable of remembering information over a long period of time. This makes them extremely useful for predicting stock prices. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    ...Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities. The package is built on PyTorch Lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Flax

    Flax

    Flax is a neural network library for JAX

    Flax is a flexible neural-network library for JAX that embraces functional programming while offering ergonomic module abstractions. Its design separates pure computation from state by threading parameter collections and RNGs explicitly, enabling reproducibility, transformation, and easy experimentation with JAX transforms like jit, pmap, and vmap. Modules define parameterized computations, but initialization and application remain side-effect free, which pairs naturally with JAX’s staging and compilation model. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit.
    Downloads: 0 This Week
    Last Update:
    See Project
  • InEight is a leader in construction project controls software Icon
    InEight is a leader in construction project controls software

    InEight serves contractors, owners, and engineers in capital construction

    Minimize risks, gain operational efficiency, control project costs, and make confident, informed decisions. InEight software has your back during every stage of construction, from accurate pre-planning to predictable execution and completion. When project teams collaborate effectively, every decision is backed by precise, authoritative insights.
    Learn More
  • 10
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    The core idea is to remove the error sources and difficulties of Deep Learning applications by providing a safe haven of commoditized practices, all available as a single core. While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Penzai

    Penzai

    A JAX research toolkit to build, edit, & visualize neural networks

    Penzai, developed by Google DeepMind, is a JAX-based library for representing, visualizing, and manipulating neural network models as functional pytree data structures. It is designed to make machine learning research more interpretable and interactive, particularly for tasks like model surgery, ablation studies, architecture debugging, and interpretability research. Unlike conventional neural network libraries, Penzai exposes the full internal structure of models, enabling fine-grained inspection and modification after training. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Bittensor

    Bittensor

    Internet-scale Neural Networks

    Bittensor is a decentralized machine learning protocol that allows AI models to collaborate, learn, and earn tokens within a global network. It introduces a blockchain-based economy for neural networks, where participants are incentivized to contribute valuable knowledge and compute power. Bittensor combines peer-to-peer learning with on-chain rewards, creating a self-governing, scalable AI system that evolves without centralized control. It is a novel approach to aligning incentives in AI development, empowering open contributions while preserving model ownership and decentralization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    ...The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before they pass into a neural network (if you use augmentation). The general recommendation is to use suitable augs for your data and as many as possible, then after some time of training disable the most destructive (for image) augs. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    ...It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 16
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    ...It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. ...
    Downloads: 23 This Week
    Last Update:
    See Project
  • 17
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 19
    Chemprop

    Chemprop

    Message Passing Neural Networks for Molecule Property Prediction

    Chemprop is a repository containing message-passing neural networks for molecular property prediction.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 20
    TensorFlow.js

    TensorFlow.js

    TensorFlow.js is a library for machine learning in JavaScript

    ...Comfortable with concepts like Tensors, Layers, Optimizers and Loss Functions (or willing to get comfortable with them)? TensorFlow.js provides flexible building blocks for neural network programming in JavaScript.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Bumblebee

    Bumblebee

    Pre-trained Neural Network models in Axon

    Bumblebee provides pre-trained Neural Network models on top of Axon. It includes integration with Models, allowing anyone to download and perform Machine Learning tasks with few lines of code. The best way to get started with Bumblebee is with Livebook. Our announcement video shows how to use Livebook's Smart Cells to perform different Neural Network tasks with a few clicks.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 22
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Distributed training without a master node: Distributed Hash Table allows connecting computers in a decentralized network. Fault-tolerant backpropagation: forward and backward passes succeed even if some nodes are unresponsive or take too long to respond. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Neural Network Intelligence

    Neural Network Intelligence

    AutoML toolkit for automate machine learning lifecycle

    Neural Network Intelligence is an open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning. NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate feature engineering, neural architecture search, hyperparameter tuning and model compression.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    ...All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Bootstrap Your Own Latent (BYOL)

    Bootstrap Your Own Latent (BYOL)

    Usable Implementation of "Bootstrap Your Own Latent" self-supervised

    ...Simply plugin your neural network, specifying (1) the image dimensions as well as (2) the name (or index) of the hidden layer, whose output is used as the latent representation used for self-supervised training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next