[go: up one dir, main page]

Browse free open source Transformer Models and projects below. Use the toggles on the left to filter open source Transformer Models by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 1
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc. The model serialization and computation support weights with reduced precision: 16-bit floating points (FP16), 16-bit integers (INT16), and 8-bit integers (INT8). The project supports x86-64 and AArch64/ARM64 processors and integrates multiple backends that are optimized for these platforms: Intel MKL, oneDNN, OpenBLAS, Ruy, and Apple Accelerate.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    Hyperformer

    Hyperformer

    Hypergraph Transformer for Skeleton-based Action Recognition

    This is the official implementation of our paper "Hypergraph Transformer for Skeleton-based Action Recognition." Skeleton-based action recognition aims to recognize human actions given human joint coordinates with skeletal interconnections. By defining a graph with joints as vertices and their natural connections as edges, previous works successfully adopted Graph Convolutional networks (GCNs) to model joint co-occurrences and achieved superior performance. More recently, a limitation of GCNs is identified, i.e., the topology is fixed after training. To relax such a restriction, Self-Attention (SA) mechanism has been adopted to make the topology of GCNs adaptive to the input, resulting in the state-of-the-art hybrid models. Concurrently, attempts with plain Transformers have also been made, but they still lag behind state-of-the-art GCN-based methods due to the lack of structural prior.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Neuro-comma

    Neuro-comma

    Punctuation restoration production-ready model for Russian language

    This library was developed with the idea to help us to create punctuation restoration models to memorize trained parameters, data, training visualization, etc. The Library doesn't use any high-level frameworks, such as PyTorch-lightning or Keras, to reduce the level entry threshold. Feel free to fork this repo and edit model or dataset classes for your purposes. Our team always uses the latest version and features of Python. We started with Python 3.9, but realized, that there is no FastAPI image for Python 3.9. There is several PRs in image repositories, but no response from maintainers. So we decided to change code which we use in production to work with the 3.8 version of Python. In some functions we have 3.9 code, but we still use them, these functions are needed only for development purposes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    imodelsX

    imodelsX

    Interpretable prompting and models for NLP

    Interpretable prompting and models for NLP (using large language models). Generates a prompt that explains patterns in data (Official) Explain the difference between two distributions. Find a natural-language prompt using input-gradients. Fit a better linear model using an LLM to extract embeddings. Fit better decision trees using an LLM to expand features. Finetune a single linear layer on top of LLM embeddings. Use these just a like a sci-kit-learn model. During training, they fit better features via LLMs, but at test-time, they are extremely fast and completely transparent.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    solo-learn

    solo-learn

    Library of self-supervised methods for visual representation

    A library of self-supervised methods for visual representation learning powered by Pytorch Lightning. A library of self-supervised methods for unsupervised visual representation learning powered by PyTorch Lightning. We aim at providing SOTA self-supervised methods in a comparable environment while, at the same time, implementing training tricks. The library is self-contained, but it is possible to use the models outside of solo-learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next