[go: up one dir, main page]

Open Source Swift Realtime Processing Software

Swift Realtime Processing Software

View 213 business solutions

Browse free open source Swift Realtime Processing Software and projects below. Use the toggles on the left to filter open source Swift Realtime Processing Software by OS, license, language, programming language, and project status.

  • La version gratuite d'Auth0 s'enrichit ! Icon
    La version gratuite d'Auth0 s'enrichit !

    Gratuit pour 25 000 utilisateurs avec intégration Okta illimitée : concentrez-vous sur le développement de vos applications.

    Vous l'avez demandé, nous l'avons fait ! Les versions gratuite et payante d'Auth0 incluent des options qui vous permettent de développer, déployer et faire évoluer vos applications en toute sécurité. Utilisez Auth0 dès maintenant pour découvrir tous ses avantages.
    Essayez Auth0 gratuitement
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    GPUImage 2

    GPUImage 2

    Framework for GPU-accelerated video and image processing

    GPUImage 2 is the second generation of the GPUImage framework, an open source project for performing GPU-accelerated image and video processing on Mac, iOS, and now Linux. The original GPUImage framework was written in Objective-C and targeted Mac and iOS, but this latest version is written entirely in Swift and can also target Linux and future platforms that support Swift code. The objective of the framework is to make it as easy as possible to set up and perform realtime video processing or machine vision against image or video sources. By relying on the GPU to run these operations, performance improvements of 100X or more over CPU-bound code can be realized. This is particularly noticeable in mobile or embedded devices. On an iPhone 4S, this framework can easily process 1080p video at over 60 FPS. On a Raspberry Pi 3, it can perform Sobel edge detection on live 720p video at over 20 FPS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next