[go: up one dir, main page]

Showing 17 open source projects for "recommender"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Business password and access manager solution for IT security teams Icon
    Business password and access manager solution for IT security teams

    Simplify Access, Secure Your Business

    European businesses use Uniqkey to simplify password management, reclaim IT control and reduce password-based cyber risk. All in one super easy-to-use tool.
    Learn More
  • 1
    Recommenders 2023

    Recommenders 2023

    Best Practices on Recommendation Systems

    Recommenders objective is to assist researchers, developers and enthusiasts in prototyping, experimenting with and bringing to production a range of classic and state-of-the-art recommendation systems. Recommenders is a project under the Linux Foundation of AI and Data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    NVIDIA Merlin is an open-source library that accelerates recommender systems on NVIDIA GPUs. The library enables data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes tools to address common feature engineering, training, and inference challenges. Each stage of the Merlin pipeline is optimized to support hundreds of terabytes of data, which is all accessible through easy-to-use APIs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several state-of-the-art algorithms are included for self-study and customization in your own applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    RecBole

    RecBole

    A unified, comprehensive and efficient recommendation library

    ...RecBole is developed based on Python and PyTorch for reproducing and developing recommendation algorithms in a unified, comprehensive and efficient framework for research purpose. It can be installed from pip, conda and source, and is easy to use. We have implemented more than 100 recommender system models, covering four common recommender system categories in RecBole and eight toolkits of RecBole2.0, including General Recommendation, Sequential Recommendation, Context-aware Recommendation, and Knowledge-based Recommendation and sub-packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud-based observability solution that helps businesses track and manage workload and performance on a unified dashboard. Icon
    Cloud-based observability solution that helps businesses track and manage workload and performance on a unified dashboard.

    For developers, engineers, and operational teams in organizations of all sizes

    Monitor everything you run in your cloud without compromising on cost, granularity, or scale. groundcover is a full stack cloud-native APM platform designed to make observability effortless so that you can focus on building world-class products. By leveraging our proprietary sensor, groundcover unlocks unprecedented granularity on all your applications, eliminating the need for costly code changes and development cycles to ensure monitoring continuity.
    Learn More
  • 5
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs. Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel, table-wise, row-wise, table-wise-row-wise, and column-wise sharding. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Robusta KRR

    Robusta KRR

    Prometheus-based Kubernetes Resource Recommendations

    Robusta KRR (Kubernetes Resource Recommender) is a CLI tool for optimizing resource allocation in Kubernetes clusters. It gathers pod usage data from Prometheus and recommends requests and limits for CPU and memory. This reduces costs and improves performance.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 7
    River ML

    River ML

    Online machine learning in Python

    River is a Python library for online machine learning. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between creme and scikit-multiflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Letterboxd Recommendations

    Letterboxd Recommendations

    Scraping publicly-accessible Letterboxd data for movie recommendations

    ...A user's "star" ratings are scraped from their Letterboxd profile and assigned numerical ratings from 1 to 10 (accounting for half stars). Their ratings are then combined with a sample of ratings from the top 4000 most active users on the site to create a collaborative filtering recommender model using singular value decomposition (SVD). All movies in the full dataset that the user has not rated are run through the model for predicted scores and the items with the top predicted scores are returned. Due to constraints in time and computing power, the maximum sample size that a user is allowed to select is 500,000 samples, though there are over five million ratings in the full dataset from the top 4000 Letterboxd users alone.
    Downloads: 0 This Week
    Last Update:
    See Project
  • A privacy-first API that predicts global consumer preferences Icon
    A privacy-first API that predicts global consumer preferences

    Qloo AI adds value to a wide range of Fortune 500 companies in the media, technology, CPG, hospitality, and automotive sectors.

    Through our API, we provide contextualized personalization and insights based on a deep understanding of consumer behavior and more than 575 million people, places, and things.
    Learn More
  • 10
    Transformers4Rec

    Transformers4Rec

    Transformers4Rec is a flexible and efficient library

    Transformers4Rec is an advanced recommendation system library that leverages Transformer models for sequential and session-based recommendations. The library works as a bridge between natural language processing (NLP) and recommender systems (RecSys) by integrating with one of the most popular NLP frameworks, Hugging Face Transformers (HF). Transformers4Rec makes state-of-the-art transformer architectures available for RecSys researchers and industry practitioners. Traditional recommendation algorithms usually ignore the temporal dynamics and the sequence of interactions when trying to model user behavior. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    CRSLab is an open-source toolkit for building Conversational Recommender System (CRS). It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    DeText

    DeText

    A Deep Neural Text Understanding Framework

    DeText is a Deep Text understanding framework for NLP-related ranking, classification, and language generation tasks. It leverages semantic matching using deep neural networks to understand member intents in search and recommender systems. As a general NLP framework, DeText can be applied to many tasks, including search & recommendation ranking, multi-class classification and query understanding tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Albedo

    Albedo

    A recommender system for discovering GitHub repos

    Albedo is an open-source recommender system aimed at helping developers discover GitHub repositories by learning from activity signals. It treats repositories and developers as a graph of interactions and applies large-scale matrix factorization to model affinities, with Apache Spark providing the distributed data processing. The project focuses on implicit feedback—stars, watches, and other engagement metrics—so it can build useful recommendations without explicit ratings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 15
    Spotlight

    Spotlight

    Deep recommender models using PyTorch

    Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MRA

    MRA

    A general recommender system with basic models and MRA

    Multi-categorization Recommendation Adjusting (MRA) is to optimize the results of recommendation based on traditional(basic) recommendation models, through introducing objective category information and taking use of the feature that users always get the habits of preferring certain categories. Besides this, there are two advantages of this improved model: 1) it can be easily applied to any kind of existing recommendation models. And 2) a controller is set in this improved model to provide...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    ...It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next