[go: up one dir, main page]

Showing 3 open source projects for "loop"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    nanoGPT

    nanoGPT

    The simplest, fastest repository for training/finetuning models

    ...It distills the GPT architecture into a few hundred lines of Python code, making it far easier to understand than large, production-scale implementations. The repo is organized with a training pipeline (dataset preprocessing, model definition, optimizer, training loop) and inference script so you can train a small GPT on text datasets like Shakespeare or custom corpora. It emphasizes readability and clarity: the training loop is cleanly written, and the code avoids heavy abstractions, letting students follow the architecture step by step. While simple, it can still train non-trivial models on modern GPUs and generate coherent text. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Open Source Vizier

    Open Source Vizier

    Python-based research interface for blackbox

    ...A wide collection of objective functions and methods to benchmark and compare algorithms. Define a problem statement and study configuration. Setup a local server, setup a client to connect to the server, perform a typical tuning loop, and use other client APIs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    ...It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make something totally new. Catalyst is compatible with Python 3.6+. PyTorch 1.1+, and has been tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10 and Windows Subsystem for Linux. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next