[go: up one dir, main page]

Browse free open source Python Generative AI and projects below. Use the toggles on the left to filter open source Python Generative AI by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    CIPS-3D

    CIPS-3D

    3D-aware GANs based on NeRF (arXiv)

    3D-aware GANs based on NeRF (arXiv). This repository contains the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. The problem of mirror symmetry refers to the sudden change of the direction of the bangs near the yaw angle of pi/2. We propose to use an auxiliary discriminator to solve this problem. Note that in the initial stage of training, the auxiliary discriminator must dominate the generator more than the main discriminator does. Otherwise, if the main discriminator dominates the generator, the mirror symmetry problem will still occur. In practice, progressive training is able to guarantee this. We have trained many times from scratch. Adding an auxiliary discriminator stably solves the mirror symmetry problem.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CLIP Guided Diffusion

    CLIP Guided Diffusion

    A CLI tool/python module for generating images from text

    A CLI tool/python module for generating images from text using guided diffusion and CLIP from OpenAI. Text to image generation (multiple prompts with weights). Non-square Generations (experimental) Generate portrait or landscape images by specifying a number to offset the width and/or height. Uses fewer timesteps over the same diffusion schedule. Sacrifices accuracy/alignment for quicker runtime. options: - 25, 50, 150, 250, 500, 1000, ddim25,ddim50,ddim150, ddim250,ddim500,ddim1000 (default: 1000) Prepending a number with ddim will use the ddim scheduler. e.g. ddim25 will use the 25 timstep ddim scheduler. This method may be better at shorter timestep_respacing values. Multiple prompts can be specified with the | character. You may optionally specify a weight for each prompt.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    CRSLab is an open-source toolkit for building Conversational Recommender System (CRS). It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We support a series of widely-adopted evaluation protocols for testing and comparing different CRS. General and extensible structure: We design a general and extensible structure to unify various conversational recommendation datasets and models, in which we integrate various built-in interfaces and functions for quickly development. Easy to get started: We provide simple yet flexible configuration for new researchers to quickly start in our library. Human-machine interaction interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may need to manually preprocess your data into the correct format, for example, continuous data must be represented as floats. Discrete data must be represented as ints or strings. The data should not contain any missing values.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    ChatGPT-Reviewer

    ChatGPT-Reviewer

    Automated pull requests reviewing and issues triaging with ChatGPT

    Automated pull requests reviewing and issues triaging with ChatGPT. Create an OpenAI API key here, and then set the key as an action secret in your repository named OPENAI_API_KEY. The ChatGPT reviewer PRs are also getting reviewed by ChatGPT, refer the pull requests for the sample review comments. In order to protect public repositories for malicious users, Github runs all pull request workflows raised from repository forks with a read-only token and no access to secrets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    DALL-E in Pytorch

    DALL-E in Pytorch

    Implementation / replication of DALL-E, OpenAI's Text to Image

    Implementation / replication of DALL-E (paper), OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the generations. Kobiso, a research engineer from Naver, has trained on the CUB200 dataset here, using full and deepspeed sparse attention. You can also skip the training of the VAE altogether, using the pretrained model released by OpenAI! The wrapper class should take care of downloading and caching the model for you auto-magically. You can also use the pretrained VAE offered by the authors of Taming Transformers! Currently only the VAE with a codebook size of 1024 is offered, with the hope that it may train a little faster than OpenAI's, which has a size of 8192. In contrast to OpenAI's VAE, it also has an extra layer of downsampling, so the image sequence length is 256 instead of 1024 (this will lead to a 16 reduction in training costs, when you do the math).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DCGAN in TensorLayerX

    DCGAN in TensorLayerX

    The Simplest DCGAN Implementation

    This is an implementation of Deep Convolutional Generative Adversarial Networks. First, download the aligned face images from google or baidu to a data folder. Please place dataset 'img_align_celeba.zip' under 'data/celebA/' by default.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DCVGAN

    DCVGAN

    DCVGAN: Depth Conditional Video Generation, ICIP 2019.

    This paper proposes a new GAN architecture for video generation with depth videos and color videos. The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical information. To add appropriate color to the geometrical information of the scene, the domain translation from depth to color is performed for each image. This model has three networks in the generator. In addition, the model has two discriminators.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and optionally the number of initial training steps. We can also feed in an image as an optimization goal, instead of only priming the generator network. Deepdaze will then render its own interpretation of that image. The regular mode for texts only allows 77 tokens. If you want to visualize a full story/paragraph/song/poem, set create_story to True.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Easy-to-Use Website Accessibility Widget Icon
    Easy-to-Use Website Accessibility Widget

    An accessibility solution for quick website accessibility improvement.

    All in One Accessibility is an AI based accessibility tool that helps organizations to enhance the accessibility and usability of websites quickly.
    Learn More
  • 10
    Deep Feature Rotation Multimodal Image

    Deep Feature Rotation Multimodal Image

    Implementation of Deep Feature Rotation for Multimodal Image

    Official implementation of paper Deep Feature Rotation for Multimodal Image Style Transfer [NICS'21] We propose a simple method for representing style features in many ways called Deep Feature Rotation (DFR), while still achieving effective stylization compared to more complex methods in style transfer. Our approach is a representative of the many ways of augmentation for intermediate feature embedding without consuming too much computational expense. Prepare your content image and style image. I provide some in the data/content and data/style and you can try to use them easily. We provide a visual comparison between other rotation angles that do not appear in the paper. The rotation angles will produce a very diverse number of outputs. This has proven the effectiveness of our method with other methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo, Red Cross, Omdena, Yale, & Oxford. Use one API to upload, download, and stream datasets to/from AWS S3/S3-compatible storage, GCP, Activeloop cloud, or local storage. Store images, audios and videos in their native compression. Deeplake automatically decompresses them to raw data only when needed, e.g., when training a model. Treat your cloud datasets as if they are a collection of NumPy arrays in your system's memory. Slice them, index them, or iterate through them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DeepMozart

    DeepMozart

    Audio generation using diffusion models

    Audio generation using diffusion models in PyTorch. The code is based on the audio-diffusion-pytorch repository.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DocsGPT

    DocsGPT

    GPT-powered chat for documentation search & assistance

    DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in project documentation. With its integration of powerful GPT models, developers can easily ask questions about a project and receive accurate answers. Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain model, which is, in turn, continuously evolved from interactions with the user or autonomously by the system itself. Thus, an alternative to the traditional software production processes is proposed, which involves several stages and different actors, sometimes demanding a lot of time and money without obtaining the expected result. With software engineering techniques, self-adaptive systems, and artificial intelligence, it is possible, the integration between design time and execution time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Edge GPT

    Edge GPT

    Reverse engineered API of Microsoft's Bing Chat

    Reverse engineered API of Microsoft's Bing Chat The reverse engineering the chat feature of the new version of Bing. Requirements: - Python 3.8+ - A Microsoft account with Bing Chat access
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs. Across a variety of natural-language-processing datasets, Emb-GAM achieves strong prediction performance without sacrificing interpretability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Exposure

    Exposure

    Learning infinite-resolution image processing with GAN and RL

    Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model. ACM Transactions on Graphics (presented at SIGGRAPH 2018) Exposure is originally designed for RAW photos, which assumes 12+ bit color depth and linear "RGB" color space (or whatever we get after demosaicing). jpg and png images typically have only 8-bit color depth (except 16-bit pngs) and the lack of information (dynamic range/activation resolution) may lead to suboptimal results such as posterization. Moreover, jpg and most pngs assume an sRGB color space, which contains a roughly 1/2.2 Gamma correction, making the data distribution different from training images (which are linear). Exposure is just a prototype (proof-of-concept) of our latest research, and there are definitely a lot of engineering efforts required to make it suitable for a real product.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    G-Diffuser Bot

    G-Diffuser Bot

    Discord bot and Interface for Stable Diffusion

    The first release of the all-in-one installer version of G-Diffuser is here. This release no longer requires the installation of WSL or Docker and has a systray icon to keep track of and launch G-Diffuser components. The infinite zoom scripts have been updated with some improvements, notably a new compositer script that is hundreds of times faster than before. The first release of the all-in-one installer is here. It notably features much easier "one-click" installation and updating, as well as a systray icon to keep track of g-diffuser programs and the server while it is running. Run run.cmd to start the G-Diffuser system. You should see a G-Diffuser icon in your systray/notification area. Click on the icon to open and interact with the G-Diffuser system. If the icon is missing be sure it isn't hidden by clicking the "up" arrow near the notification area.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    GANformer

    GANformer

    Generative Adversarial Transformers

    This is an implementation of the GANformer model, a novel and efficient type of transformer, explored for the task of image generation. The network employs a bipartite structure that enables long-range interactions across the image, while maintaining computation of linearly efficiency, that can readily scale to high-resolution synthesis. The model iteratively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of each in light of the other and encourage the emergence of compositional representations of objects and scenes. In contrast to the classic transformer architecture, it utilizes multiplicative integration that allows flexible region-based modulation and can thus be seen as a generalization of the successful StyleGAN network. Using the pre-trained models (generated after training for 5-7x less steps than StyleGAN2 models! Training our models for longer will improve the image quality further).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    GPT-2 FR

    GPT-2 FR

    GPT-2 French demo | Démo française de GPT-2

    OpenAI GPT-2 model trained on four different datasets in French. Books in French, French film scripts, reports of parliamentary debates, Tweet by Emmanuel Macron, allowing to generate text. Tensorflow and gpt-2-simple are required in order to fine-tune GPT-2. Create an environment then install the two packages pip install tensorflow==1.14 gpt-2-simple. A script and a notebook are available in the src folder to fine-tune GPT-2 on your own datasets. The output of each workout, i.e. the folder checkpoint/run1, is to be put ingpt2-model/model1 model2 model3 etc. You can run the script deploy_cloudrun.shto deploy all your different models (into gpt2-model) at once. However, you must have already initialized the gcloud CLI tool (Cloud SDK).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    GPT-Code UI

    GPT-Code UI

    An open source implementation of OpenAI's ChatGPT Code interpreter

    An open source implementation of OpenAI's ChatGPT Code interpreter. Simply ask the OpenAI model to do something and it will generate & execute the code for you. You can put a .env in the working directory to load the OPENAI_API_KEY environment variable. For Azure OpenAI Services, there are also other configurable variables like deployment name. See .env.azure-example for more information. Note that model selection on the UI is currently not supported for Azure OpenAI Services.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    GPT2 for Multiple Languages

    GPT2 for Multiple Languages

    GPT2 for Multiple Languages, including pretrained models

    With just 2 clicks (not including Colab auth process), the 1.5B pretrained Chinese model demo is ready to go. The contents in this repository are for academic research purpose, and we do not provide any conclusive remarks. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC) Simplifed GPT2 train scripts(based on Grover, supporting TPUs). Ported bert tokenizer, multilingual corpus compatible. 1.5B GPT2 pretrained Chinese model (~15G corpus, 10w steps). Batteries-included Colab demo. 1.5B GPT2 pretrained Chinese model (~30G corpus, 22w steps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    HyperGAN

    HyperGAN

    Composable GAN framework with api and user interface

    A composable GAN built for developers, researchers, and artists. HyperGAN builds generative adversarial networks in PyTorch and makes them easy to train and share. HyperGAN is currently in pre-release and open beta. Everyone will have different goals when using hypergan. HyperGAN is currently beta. We are still searching for a default cross-data-set configuration. Each of the examples supports search. Automated search can help find good configurations. If you are unsure, you can start with the 2d-distribution.py. Check out random_search.py for possibilities, you'll likely want to modify it. The examples are capable of (sometimes) finding a good trainer, like 2d-distribution. Mixing and matching components seems to work.
    Downloads: 0 This Week
    Last Update:
    See Project