[go: up one dir, main page]

R Data Visualization Software

View 445 business solutions

Browse free open source R Data Visualization Software and projects below. Use the toggles on the left to filter open source R Data Visualization Software by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • La version gratuite d'Auth0 s'enrichit ! Icon
    La version gratuite d'Auth0 s'enrichit !

    Gratuit pour 25 000 utilisateurs avec intégration Okta illimitée : concentrez-vous sur le développement de vos applications.

    Vous l'avez demandé, nous l'avons fait ! Les versions gratuite et payante d'Auth0 incluent des options qui vous permettent de développer, déployer et faire évoluer vos applications en toute sécurité. Utilisez Auth0 dès maintenant pour découvrir tous ses avantages.
    Essayez Auth0 gratuitement
  • 1
    ggplot2

    ggplot2

    An implementation of the Grammar of Graphics in R

    ggplot2 is a system written in R for declaratively creating graphics. It is based on The Grammar of Graphics, which focuses on following a layered approach to describe and construct visualizations or graphics in a structured manner. With ggplot2 you simply provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it will take care of the rest. ggplot2 is over 10 years old and is used by hundreds of thousands of people all over the world for plotting. In most cases using ggplot2 starts with supplying a dataset and aesthetic mapping (with aes()); adding on layers (like geom_point() or geom_histogram()), scales (like scale_colour_brewer()), and faceting specifications (like facet_wrap()); and finally, coordinating systems. ggplot2 has a rich ecosystem of community-maintained extensions for those looking for more innovation. ggplot2 is a part of the tidyverse, an ecosystem of R packages designed for data science.
    Downloads: 33 This Week
    Last Update:
    See Project
  • 2
    LabPlot

    LabPlot

    Data Visualization and Analysis

    LabPlot is a FREE, open source and cross-platform Data Visualization and Analysis software accessible to everyone.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 3
    gt R

    gt R

    Easily generate information-rich, publication-quality tables from R

    With the gt package, anyone can make wonderful-looking tables using the R programming language. The gt philosophy: we can construct a wide variety of useful tables with a cohesive set of table parts. These include the table header, the stub, the column labels and spanner column labels, the table body, and the table footer. It all begins with table data (be it a tibble or a data frame). You then decide how to compose your gt table with the elements and formatting you need for the task at hand. Finally, the table is rendered by printing it at the console, including it in an R Markdown document, or exporting it to a file using gtsave(). Currently, gt supports the HTML, LaTeX, and RTF output formats.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    rayshader

    rayshader

    R Package for 2D and 3D mapping and data visualization

    This is an R package designed for producing beautiful and interactive 2D and 3D visualizations — especially maps and terrain renderings — using elevation/gridded data and ray-tracing / hill-shading methods. At its core, rayshader takes a matrix of elevations and applies shading, texture, ambient occlusion, overlays, and light modeling (ray shade, lambertian shading, etc.) to produce realistic relief maps. Users can rotate, zoom, and animate the scenes or script camera trajectories programmatically. It supports outputting high-quality renders via path tracing (using a companion package) and also offers depth-of-field (“cinematic blur”) effects to bring visual focus into scenes. It allows layering relational data (roads, points, polygons) on top of the shaded terrain, so you can combine spatial data overlays with the 3D model. The package can export models to 3D formats like STL or OBJ for 3D printing or external rendering.
    Downloads: 1 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    ComplexHeatmap

    ComplexHeatmap

    Make Complex Heatmaps

    ComplexHeatmap is an R/Bioconductor package by Zuguang Gu et al. designed to create highly flexible, complex, richly annotated heatmaps and related visualizations. It allows arranging multiple heatmaps, adding annotations, combining heatmaps, customizing colors, layouts, and integrating other plots. Often used in genomics/bioinformatics to show expression, methylation, etc., with sidebars, annotations, clustering, etc. Highly customizable layout: combining different heatmaps, arranging and splitting, dealing with multiple heatmap merges, combining with other plots etc. Integration with Shiny / interactive heatmaps via companion packages (InteractiveComplexHeatmap) to allow interactivity, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    FriendsDon'tLetFriends

    FriendsDon'tLetFriends

    Friends don't let friends make certain types of data visualization

    Friends don't let friends make certain types of data visualization - What are they and why are they bad.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    JuliaConnectoR

    JuliaConnectoR

    A functionally oriented interface for calling Julia from R

    This R-package provides a functionally oriented interface between R and Julia. The goal is to call functions from Julia packages directly as R functions. Julia functions imported via the JuliaConnectoR can accept and return R variables. It is also possible to pass R functions as arguments in place of Julia functions, which allows callbacks from Julia to R. From a technical perspective, R data structures are serialized with an optimized custom streaming format, sent to a (local) Julia TCP server, and translated to Julia data structures by Julia. The results of function calls are likewise translated back to R. Complex Julia structures can either be used by reference via proxy objects in R or fully translated to R data structures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Wes Anderson Palettes

    Wes Anderson Palettes

    A Wes Anderson color palette for R

    Tired of generic mass produced palettes for your plots? Short of adding an owl and dressing up your plot in a bowler hat, here’s the most indie thing you can do to one. The first round of palettes derived from the amazing Tumblr blog Wes Anderson Palettes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    brms

    brms

    brms R package for Bayesian generalized multivariate models using Stan

    brms is an R package by Paul Bürkner which provides a high-level interface for fitting Bayesian multilevel (i.e. mixed effects) models, generalized linear / non-linear / multivariate models using Stan as the backend. It allows R users to specify complex Bayesian models using formula syntax similar to lme4 but with far more flexibility (distributions, link functions, hierarchical structure, nonlinear terms, etc.). It supports model diagnostics, posterior predictive checking, model comparison, custom priors, and advanced features such as distributional regression.
    Downloads: 0 This Week
    Last Update:
    See Project
  • ManageEngine Endpoint Central for IT Professionals Icon
    ManageEngine Endpoint Central for IT Professionals

    A one-stop Unified Endpoint Management (UEM) solution

    ManageEngine's Endpoint Central is a Unified Endpoint Management Solution, that takes care of enterprise mobility management (including all features of mobile application management and mobile device management), as well as client management for a diversified range of endpoints - mobile devices, laptops, computers, tablets, server machines etc. With ManageEngine Endpoint Central, users can automate their regular desktop management routines like distributing software, installing patches, managing IT assets, imaging and deploying OS, and more.
    Learn More
  • 10
    circlize

    circlize

    Circular visualization in R

    circlize is an R package for creating circular visualizations (plots laid out in circular coordinate systems) in a very flexible way. It implements many types of plots using circular layouts: chord diagrams, circular heatmaps, arcs/links between sectors, genomic data visualization, etc. It provides low-level drawing functions as well as high-level functions to build complex visualizations. It’s often used in genomics, network analysis, or other fields where relationships among categories or entities can be nicely displayed in a circular fashion. Support for circular heatmaps, multiple tracks (rings), for showing multiple layers of data per sector. Good performance and stable codebase, detailed documentation including a book on usage examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    esquisse

    esquisse

    RStudio add-in to make plots interactively with ggplot2

    The purpose of this add-in is to let you explore your data quickly to extract the information they hold. You can create visualization with {ggplot2}, filter data with {dplyr} and retrieve generated code. This addin allows you to interactively explore your data by visualizing it with the ggplot2 package. It allows you to draw bar plots, curves, scatter plots, histograms, boxplot and sf objects, then export the graph or retrieve the code to reproduce the graph. This addin allows you to interactively explore your data by visualizing it with the ggplot2 package. It allows you to draw bar plots, curves, scatter plots, histograms, boxplot and sf objects, then export the graph or retrieve the code to reproduce the graph.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    forecast

    forecast

    Forecasting Functions for Time Series and Linear Models

    The forecast package is a comprehensive R package for time series analysis and forecasting. It provides functions for building, assessing, and using univariate forecasting models (e.g. ARIMA, exponential smoothing, etc.), tools for automatic model selection, diagnostics, plotting, forecasting future values, etc. It's widely used in statistics, economics, business forecasting, environmental science, etc. Exponential smoothing state space models (ETS) including seasonal components. Residual checks, model accuracy, plots, forecast error measures etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    gganimate

    gganimate

    A Grammar of Animated Graphics

    gganimate extends the grammar of graphics as implemented by ggplot2 to include the description of animation. It does this by providing a range of new grammar classes that can be added to the plot object in order to customize how it should change with time. Here we take a simple boxplot of fuel consumption as a function of cylinders and let it transition between the number of gears available in the cars. As this is a discrete split (gear being best described as an ordered factor) we use transition_states and provide a relative length to use for transition and state view. As not all combinations of data are present there are states missing a box. We define that when a box appears it should fade into view, whereas it should shrink away when it disappears. Lastly, we decide to use a sinusoidal easing for all our aesthetics (here, only y is changing) gganimate is available on CRAN and can be installed with install.packages('gganimate').
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ggforce

    ggforce

    Accelerating ggplot2

    ggforce is an extension package for ggplot2 that introduces specialized statistical transforms, geoms, and layout utilities to enhance and complement the built-in ggplot2 offerings. It enables more advanced visualization techniques such as faceting enhancements, hulls, annotation marks, and novel layouts for network data and marked regions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ggpubr

    ggpubr

    'ggplot2' Based Publication Ready Plots

    ggpubr is an R package that provides easy-to-use wrapper functions around ggplot2 to create publication-ready visualizations with minimal code. It streamlines plot creation for researchers and analysts, allowing features such as statistical annotation, theme customization, and plot arrangement with fewer lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ggraph

    ggraph

    Grammar of Graph Graphics

    ggraph adapts the Grammar of Graphics from ggplot2 for network and graph visualizations. It integrates with tidygraph/igraph data structures, providing a wide range of geoms, layouts (e.g. hive plots, circle packing), and layering methods tailored to hierarchical or relational data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    ggrepel

    ggrepel

    epel overlapping text labels away from each other in your ggplot2

    ggrepel is an R package that provides “smart” repulsion for text and label geoms in ggplot2. When placing text labels on a plot (e.g. labeling points), the labels can often overlap; ggrepel ensures labels don’t overlap (or overlap less) by repelling labels / pushing them away, adding connecting lines or nudges, etc. It improves the readability of plots, especially when many labels are present. Support for point and segment geoms (so labels can be connected by lines when moved). Supports both plotting of labels inside or outside plot area, with trimming/clipping etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    ggstatsplot

    ggstatsplot

    Enhancing {ggplot2} plots with statistical analysis

    {ggstatsplot} is an extension of {ggplot2} package for creating graphics with details from statistical tests included in the information-rich plots themselves. In a typical exploratory data analysis workflow, data visualization and statistical modeling are two different phases: visualization informs modeling, and modeling in its turn can suggest a different visualization method, and so on and so forth. Bayesian hypothesis-testing. The central idea of {ggstatsplot} is simple: combine these two phases into one in the form of graphics with statistical details, which makes data exploration simpler and faster. Summary of statistical tests and effect sizes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    hrbrthemes

    hrbrthemes

    Opinionated, typographic-centric ggplot2 themes and theme components

    hrbrthemes is a focused ggplot2 theme package with an emphasis on typography, layout precision, and visual polish. It includes themes like theme_ipsum and Font scales tailored for clean, high‑quality production graphics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    hui

    hui

    hewies user interface - 3D scientific visualisation tool

    Python project with goal to provide FOSS library to extract, analyse and visualise data in a 3D fashion. The instance will connect to a data source, ods sheet, csv, sql DB, pyodbc the instance will analyse and/or transform the data to be presented to the visualisation functionality the instance will visualise the data in a 3D fashion, likely using third party FOSS
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    plotly

    plotly

    An interactive graphing library for R

    This part of the book teaches you how to leverage the plotly R package to create a variety of interactive graphics. There are two main ways to creating a plotly object: either by transforming a ggplot2 object (via ggplotly()) into a plotly object or by directly initializing a plotly object with plot_ly()/plot_geo()/plot_mapbox(). Both approaches have somewhat complementary strengths and weaknesses, so it can pay off to learn both approaches. Moreover, both approaches are an implementation of the Grammar of Graphics and both are powered by the JavaScript graphing library plotly.js, so many of the same concepts and tools that you learn for one interface can be reused in the other. Any graph made with the plotly R package is powered by the JavaScript library plotly.js. The plot_ly() function provides a ‘direct’ interface to plotly.js with some additional abstractions to help reduce typing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    see

    see

    Visualisation toolbox for beautiful and publication-ready figures

    see is an R package that serves as the visualization component of the easystats ecosystem, providing plotting utilities to produce publication-ready visualizations of statistical model parameters, diagnostics, predictions, and performance metrics. It works in conjunction with other easystats packages (such as parameters, performance, modelbased, bayestestR, etc.) to convert model outputs or summary objects into visual forms (dot-and-whisker plots, diagnostic plots, residual plots, etc.). It includes themes, scales, geoms for ggplot2, and custom color palettes to make visual summaries more informative and attractive.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    sf (Simple Features)

    sf (Simple Features)

    Simple Features for R

    sf is an R package that implements “simple features” (standardized vector spatial data) for R. It allows spatial vector data (points, lines, polygons etc.) to be represented as records in data frames (or tibbles) with geometry list columns, and performs spatial operations (geometry operations, coordinate reference system transformations, reading/writing spatial data, integration with spatial databases etc.). It interfaces to GDAL, GEOS, PROJ libraries for robust operations. Reading and writing spatial vector data via many file formats/drivers through GDAL, and spatial databases (PostGIS etc.) Supports all standard simple feature geometry types (points, linestrings, polygons, multi-geometries etc.) in various dimensions (XY, XYZ, XYM, XYZM).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next