[go: up one dir, main page]

Data Quality Tools for Windows

View 37 business solutions

Browse free open source Data Quality tools and projects for Windows below. Use the toggles on the left to filter open source Data Quality tools by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    iTop - IT Service Management & CMDB

    iTop - IT Service Management & CMDB

    An easy, extensible web based IT service management platform

    Whether you’re an infrastructure manager handling complex systems, a service support leader striving for customer satisfaction, or a decision-maker focused on ROI and compliance, iTop adapts to your processes to simplify your tasks, streamline operations, and enhance service quality. iTop (IT Operations Portal) by Combodo is an all-in-one, open-source ITSM platform designed to streamline IT operations. iTop offers a highly customizable, low-code Configuration Management Database (CMDB), along with advanced tools for handling requests, incidents, problems, changes, and service management. iTop is ITIL-compliant, making it ideal for organizations looking for standardized and scalable IT processes. Trusted by organizations worldwide, iTop provides a flexible, extensible solution. The platform’s source code is openly available on GitHub [https://github.com/Combodo/iTop].
    Leader badge">
    Downloads: 1,140 This Week
    Last Update:
    See Project
  • 2
    TTA Lossless Audio Codec
    Lossless compressor for multichannel 8,16 and 24 bits audio data, with the ability of password data protection. Being 'lossless' means that no data/quality is lost in the compression - when uncompressed, the data will be identical to the original.
    Leader badge">
    Downloads: 124 This Week
    Last Update:
    See Project
  • 3
    CSV Lint

    CSV Lint

    CSV Lint plug-in for Notepad++ for syntax highlighting

    CSV Lint plug-in for Notepad++ for syntax highlighting, csv validation, automatic column and datatype detecting fixed width datasets, change datetime format, decimal separator, sort data, count unique values, convert to xml, json, sql etc. A plugin for data cleaning and working with messy data files. Use CSV Lint for metadata discovery, technical data validation, and reformatting on tabular data files. It is not meant to be a replacement for spreadsheet programs like Excel or SPSS, but rather it's a quality control tool to examine, verify or polish up a dataset before further processing.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 4
    lakeFS

    lakeFS

    lakeFS - Git-like capabilities for your object storage

    Increase data quality and reduce the painful cost of errors. Data engineering best practices using git-like operations on data. lakeFS is an open-source data version control for data lakes. It enables zero-copy Dev / Test isolated environments, continuous quality validation, atomic rollback on bad data, reproducibility, and more. Data is dynamic, it changes over time. Dealing with that without a data version control system is error-prone and labor-intensive. With lakeFS, your data lake is version controlled and you can easily time-travel between consistent snapshots of the lake. Easier ETL testing - test your ETLs on top of production data, in isolation, without copying anything. Safely experiment and test on full production data. Easily Collaborate on production data with your team. Automate data quality checks within data pipelines.
    Downloads: 11 This Week
    Last Update:
    See Project
  • Cloud-based observability solution that helps businesses track and manage workload and performance on a unified dashboard. Icon
    Cloud-based observability solution that helps businesses track and manage workload and performance on a unified dashboard.

    For developers, engineers, and operational teams in organizations of all sizes

    Monitor everything you run in your cloud without compromising on cost, granularity, or scale. groundcover is a full stack cloud-native APM platform designed to make observability effortless so that you can focus on building world-class products. By leveraging our proprietary sensor, groundcover unlocks unprecedented granularity on all your applications, eliminating the need for costly code changes and development cycles to ensure monitoring continuity.
    Learn More
  • 5
    Encord Active

    Encord Active

    The toolkit to test, validate, and evaluate your models and surface

    Encord Active is an open-source toolkit to test, validate, and evaluate your models and surface, curate, and prioritize the most valuable data for labeling to supercharge model performance. Encord Active has been designed as a all-in-one open source toolkit for improving your data quality and model performance. Use the intuitive UI to explore your data or access all the functionalities programmatically. Discover errors, outliers, and edge-cases within your data - all in one open source toolkit. Get a high level overview of your data distribution, explore it by customizable quality metrics, and discover any anomalies. Use powerful similarity search to find more examples of edge-cases or outliers.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 6
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase, separator), scripts (Latin, Cyrillic) and blocks (ASCII, Cyrilic). File sizes, creation dates, dimensions, indication of truncated images and existance of EXIF metadata. Mostly global details about the dataset (number of records, number of variables, overall missigness and duplicates, memory footprint). Comprehensive and automatic list of potential data quality issues (high correlation, skewness, uniformity, zeros, missing values, constant values, between others).
    Downloads: 7 This Week
    Last Update:
    See Project
  • 7
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to boost the performance of your model. FiftyOne provides the building blocks for optimizing your dataset analysis pipeline. Use it to get hands-on with your data, including visualizing complex labels, evaluating your models, exploring scenarios of interest, identifying failure modes, finding annotation mistakes, and much more! Surveys show that machine learning engineers spend over half of their time wrangling data, but it doesn't have to be that way.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    Apache Airflow Provider

    Apache Airflow Provider

    Great Expectations Airflow operator

    Due to apply_default decorator removal, this version of the provider requires Airflow 2.1.0+. If your Airflow version is 2.1.0, and you want to install this provider version, first upgrade Airflow to at least version 2.1.0. Otherwise, your Airflow package version will be upgraded automatically, and you will have to manually run airflow upgrade db to complete the migration. This operator currently works with the Great Expectations V3 Batch Request API only. If you would like to use the operator in conjunction with the V2 Batch Kwargs API, you must use a version below 0.1.0. This operator uses Great Expectations Checkpoints instead of the former ValidationOperators. Because of the above, this operator requires Great Expectations >=v0.13.9, which is pinned in the requirements.txt starting with release 0.0.5.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Dagster

    Dagster

    An orchestration platform for the development, production

    Dagster is an orchestration platform for the development, production, and observation of data assets. Dagster as a productivity platform: With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. Dagster as a robust orchestration engine: Put your pipelines into production with a robust multi-tenant, multi-tool engine that scales technically and organizationally. Dagster as a unified control plane: The ‘single plane of glass’ data teams love to use. Rein in the chaos and maintain control over your data as the complexity scales. Centralize your metadata in one tool with built-in observability, diagnostics, cataloging, and lineage. Spot any issues and identify performance improvement opportunities.
    Downloads: 4 This Week
    Last Update:
    See Project
  • ServiceDesk Plus, a world-class IT and enterprise service management platform Icon
    ServiceDesk Plus, a world-class IT and enterprise service management platform

    Design, automate, deliver, and manage critical IT and business services

    Best in class online service desk software. Offer your customers world-class services with ServiceDesk Plus Cloud, the easy-to-use SaaS service desk software from ManageEngine, the IT management division of Zoho. Track and manage IT tickets efficiently, resolve issues faster, and ensure end-user satisfaction with the cloud-based IT ticketing system used by over 100,000 IT service desks worldwide. Manage the complete life cycle of IT incidents, problems, changes, and projects with out of the box ITIL workflows. Create support SLAs, define escalation levels, and ensure compliance. Automate ticket dispatch, categorization, classification, and assignment based on predefined business rules, and set up notifications and alerts for timely ticket resolution. Reduce walk ins and unnecessary tickets by giving your users more control. Enable end users to access IT services through your service catalog in the self-service portal. Help users create and track tickets and search for solutions.
    Learn More
  • 10
    ydata-profiling

    ydata-profiling

    Create HTML profiling reports from pandas DataFrame objects

    ydata-profiling primary goal is to provide a one-line Exploratory Data Analysis (EDA) experience in a consistent and fast solution. Like pandas df.describe() function, that is so handy, ydata-profiling delivers an extended analysis of a DataFrame while allowing the data analysis to be exported in different formats such as html and json.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    CleanVision

    CleanVision

    Automatically find issues in image datasets

    CleanVision automatically detects potential issues in image datasets like images that are: blurry, under/over-exposed, (near) duplicates, etc. This data-centric AI package is a quick first step for any computer vision project to find problems in the dataset, which you want to address before applying machine learning. CleanVision is super simple -- run the same couple lines of Python code to audit any image dataset! The quality of machine learning models hinges on the quality of the data used to train them, but it is hard to manually identify all of the low-quality data in a big dataset. CleanVision helps you automatically identify common types of data issues lurking in image datasets. This package currently detects issues in the raw images themselves, making it a useful tool for any computer vision task such as: classification, segmentation, object detection, pose estimation, keypoint detection, generative modeling, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Gretel Synthetics

    Gretel Synthetics

    Synthetic data generators for structured and unstructured text

    Unlock unlimited possibilities with synthetic data. Share, create, and augment data with cutting-edge generative AI. Generate unlimited data in minutes with synthetic data delivered as-a-service. Synthesize data that are as good or better than your original dataset, and maintain relationships and statistical insights. Customize privacy settings so that data is always safe while remaining useful for downstream workflows. Ensure data accuracy and privacy confidently with expert-grade reports. Need to synthesize one or multiple data types? We have you covered. Even take advantage or multimodal data generation. Synthesize and transform multiple tables or entire relational databases. Mitigate GDPR and CCPA risks, and promote safe data access. Accelerate CI/CD workflows, performance testing, and staging. Augment AI training data, including minority classes and unique edge cases. Amaze prospects with personalized product experiences.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    data-diff

    data-diff

    Efficiently diff rows across two different databases

    We're excited to announce the launch of a new open-source product, data-diff that makes comparing datasets across databases fast at any scale. data-diff automates data quality checks for data replication and migration. In modern data platforms, data is constantly moving between systems, and at the modern data volume and complexity, systems go out of sync all the time. Until now, there has not been any tooling to ensure that when the data is correctly copied. Replicating data at scale, across hundreds of tables, with low latency and at a reasonable infrastructure cost is a hard problem, and most data teams we’ve talked to, have faced data quality issues in their replication processes. The hard truth is that the quality of the replication is the quality of the data. Since copying entire datasets in batch is often infeasible at the modern data scale, businesses rely on the Change Data Capture (CDC) approach of replicating data using a continuous stream of updates.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Qualitis

    Qualitis

    Qualitis is a one-stop data quality management platform

    Qualitis is a data quality management platform that supports quality verification, notification, and management for various datasource. It is used to solve various data quality problems caused by data processing. Based on Spring Boot, Qualitis submits quality model task to Linkis platform. It provides functions such as data quality model construction, data quality model execution, data quality verification, reports of data quality generation and so on. At the same time, Qualitis provides enterprise-level features of financial-level resource isolation, management and access control. It is also guaranteed working well under high-concurrency, high-performance and high-availability scenarios.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the SDV project, or input your own data. Choose from any of the SDV synthesizers and baselines. Or write your own custom machine learning model. In addition to performance and memory usage, you can also measure synthetic data quality and privacy through a variety of metrics. Install SDGym using pip or conda. We recommend using a virtual environment to avoid conflicts with other software on your device.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    DataCleaner

    DataCleaner

    Data quality analysis, profiling, cleansing, duplicate detection +more

    DataCleaner is a data quality analysis application and a solution platform for DQ solutions. It's core is a strong data profiling engine, which is extensible and thereby adds data cleansing, transformations, enrichment, deduplication, matching and merging. Website: http://datacleaner.github.io
    Leader badge">
    Downloads: 14 This Week
    Last Update:
    See Project
  • 18
    ODD Platform

    ODD Platform

    First open-source data discovery and observability platform

    Unlock the power of big data with OpenDataDiscovery Platform. Experience seamless end-to-end insights, powered by unprecedented observability and trust - from ingestion to production - while building your ideal tech stack! Democratize data and accelerate insights. Find data that fits your use case and discover hints left by your peers to leverage existing knowledge. Explore tags, ownership details, links to other sources and other information to shorten and simplify data discovery phase. Forget unnerved stakeholders and wasting too much time on digging the root cause of data issues when it fails. With ODD’s automatic company-wide ingestion-to-product lineage you’ll have answers in just seconds and stakeholders won’t need to wait. Sleep well, knowing all your data is in check. Forget manual testing, days of debugging, and weeks of worrying. Know the impact of each code change with automatic testing. Enjoy lineage and alerts powered with data quality information.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    dbt-re-data

    dbt-re-data

    re_data - fix data issues before your users & CEO would discover them

    re_data is an open-source data reliability framework for the modern data stack. Currently, re_data focuses on observing the dbt project (together with underlaying data warehouse - Postgres, BigQuery, Snowflake, Redshift). Data transformations in re_data are implemented and exposed as models & macros in this dbt package. Gather all relevant outputs about your data in one place using our cloud. Invite your team and debug it easily from there. Go back in time, and see your past metadata. Set up Slack notifications to always know when a new report is produced or an existing one got updated.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Open Source Data Quality and Profiling

    Open Source Data Quality and Profiling

    World's first open source data quality & data preparation project

    This project is dedicated to open source data quality and data preparation solutions. Data Quality includes profiling, filtering, governance, similarity check, data enrichment alteration, real time alerting, basket analysis, bubble chart Warehouse validation, single customer view etc. defined by Strategy. This tool is developing high performance integrated data management platform which will seamlessly do Data Integration, Data Profiling, Data Quality, Data Preparation, Dummy Data Creation, Meta Data Discovery, Anomaly Discovery, Data Cleansing, Reporting and Analytic. It also had Hadoop ( Big data ) support to move files to/from Hadoop Grid, Create, Load and Profile Hive Tables. This project is also known as "Aggregate Profiler" Resful API for this project is getting built as (Beta Version) https://sourceforge.net/projects/restful-api-for-osdq/ apache spark based data quality is getting built at https://sourceforge.net/projects/apache-spark-osdq/
    Downloads: 5 This Week
    Last Update:
    See Project
  • 21
    CloverDX

    CloverDX

    Design, automate, operate and publish data pipelines at scale

    Please, visit www.cloverdx.com for latest product versions. Data integration platform; can be used to transform/map/manipulate data in batch and near-realtime modes. Suppors various input/output formats (CSV,FIXLEN,Excel,XML,JSON,Parquet, Avro,EDI/X12,HL7,COBOL,LOTUS, etc.). Connects to RDBMS/JMS/Kafka/SOAP/Rest/LDAP/S3/HTTP/FTP/ZIP/TAR. CloverDX offers 100+ specialized components which can be further extended by creation of "macros" - subgraphs - and libraries, shareable with 3rd parties. Simple data manipulation jobs can be created visually. More complex business logic can be implemented using Clover's domain-specific-language CTL, in Java or languages like Python or JavaScript. Through its DataServices functionality, it allows to quickly turn data pipelines into REST API endpoints. The platform allows to easily scale your data job across multiple cores or nodes/machines. Supports Docker/Kubernetes deployments and offers AWS/Azure images in their respective marketplace
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    gravitino

    gravitino

    Unified metadata lake for data & AI assets.

    Apache Gravitino is a high-performance, geo-distributed, and federated metadata lake. It manages metadata directly in different sources, types, and regions, providing users with unified metadata access for data and AI assets.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    SolexaQA is a software to calculate quality statistics and visual representations of data quality for second-generation sequencing data.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    COBOL Data Definitions
    Parse, analyze and -- most importantly -- use COBOL data definitions. This gives you access to COBOL data from Python programs. Write data analyzers, one-time data conversion utilities and Python programs that are part of COBOL systems. Really.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    EPRI Open PQ Dashboard

    EPRI Open PQ Dashboard

    Demos new techniques for extracting information from PQ data files

    Open PQ Dashboard version 1.0 provides visual displays to quickly convey the status and location of power quality (PQ) anomalies throughout the electrical power system. Summary displays starts with the choice of a geospatial map-view or annunciator panel, both with unique visualizations for across-the-room visualizations fit for a PQ operations center. Drill-downs are in place for various statistics and guide users all the way down to the waveform level. This version consist of a few proof-of-concept applications of applying event severity and trend values to heatmap displays—giving the PQ engineers a wide-area status of PQ for quick interpretation. Data quality has been added so users can quickly see when meters are providing incomplete or invalid data. This dashboard currently accepts power quality data from COMTRADE and PQDIF standard file formats. Other proprietary software interfaces have been added. See the installation manual for more details.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next