[go: up one dir, main page]

Showing 7 open source projects for "train"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • The CRM you will want to use every day Icon
    The CRM you will want to use every day

    With CRM, Sales, and Marketing Automation in one, Act! gives you everything you need for happier clients, more revenue, and less stress.

    Act! Premium is perfect for small and midsize businesses looking to market better, sell more, and create customers for life. With unparalleled flexibility and freedom of choice, Act! Premium accommodates the unique ways you do business. Whether it’s customizations to fit your specific business or industry processes or your preferences for deployment and access, the possibilities with Act! Premium are limitless.
    Learn More
  • 1
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    ...To facilitate machine learning with messy, real-world data, this data-centric AI package uses your existing models to estimate dataset problems that can be fixed to train even better models. cleanlab cleans your data's labels via state-of-the-art confident learning algorithms, published in this paper and blog. See some of the datasets cleaned with cleanlab at labelerrors.com. This package helps you find label issues and other data issues, so you can train reliable ML models. All features of cleanlab work with any dataset and any model. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Datumaro

    Datumaro

    Dataset Management Framework, a Python library and a CLI tool to build

    Datumaro is a flexible Python-based dataset management framework and command-line tool for building, analyzing, transforming, and converting computer vision datasets in many popular formats. It supports importing and exporting annotations and images across a wide variety of standards like COCO, PASCAL VOC, YOLO, ImageNet, Cityscapes, and many more, enabling easy integration with different training pipelines and tools. Datumaro makes it easy to merge datasets, split them into...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CleanVision

    CleanVision

    Automatically find issues in image datasets

    ...CleanVision is super simple -- run the same couple lines of Python code to audit any image dataset! The quality of machine learning models hinges on the quality of the data used to train them, but it is hard to manually identify all of the low-quality data in a big dataset. CleanVision helps you automatically identify common types of data issues lurking in image datasets. This package currently detects issues in the raw images themselves, making it a useful tool for any computer vision task such as: classification, segmentation, object detection, pose estimation, keypoint detection, generative modeling, etc.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Papirfly: Best user-friendly DAM and Content Creation Software Icon
    Papirfly: Best user-friendly DAM and Content Creation Software

    The #1 solution to create and manage content. On‑brand. At scale.

    Papirfly provides a single online destination for all your employees and other stakeholders who are engaging with your brand, ensuring consistency in all aspects of their communications. Teams can produce infinite studio-standard marketing materials from bespoke templates, store, share and adapt them for their own markets and stay firmly educated on the brand’s purpose, guidelines and evolution – with no specialist skills or agency help necessary.
    Learn More
  • 5
    DeepH-pack

    DeepH-pack

    Deep neural networks for density functional theory Hamiltonian

    DeepH-pack is the official implementation of the DeepH (Deep Hamiltonian) method described in the paper Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation and in the Research Briefing. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA and will support HONPAS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    ...The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks, which means you can train a model with one framework and deploy it with another. During the model conversion, we generate some code snippets to simplify later retraining or inference. We provide a model collection to help you find some popular models. We provide a model visualizer to display the network architecture more intuitively. We provide some guidelines to help you deploy DL models to another hardware platform.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    SageMaker Containers

    SageMaker Containers

    Create SageMaker-compatible Docker containers

    Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next