[go: up one dir, main page]

Open Source JavaScript Computer Vision Libraries

JavaScript Computer Vision Libraries

View 190 business solutions

Browse free open source JavaScript Computer Vision Libraries and projects below. Use the toggles on the left to filter open source JavaScript Computer Vision Libraries by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Manage your Classes Icon
    Manage your Classes

    For educational organizations looking for a class management software of size of school, academy or studio

    DreamClass helps you efficiently manage all of your processes. Enjoy professional school management for any educational institution, in minutes!
    Learn More
  • 1
    Monk Computer Vision

    Monk Computer Vision

    A low code unified framework for computer vision and deep learning

    Monk is an open source low code programming environment to reduce the cognitive load faced by entry level programmers while catering to the needs of Expert Deep Learning engineers. There are three libraries in this opensource set. - Monk Classiciation- https://monkai.org. A Unified wrapper over major deep learning frameworks. Our core focus area is at the intersection of Computer Vision and Deep Learning algorithms. - Monk Object Detection - https://github.com/Tessellate-Imaging/Monk_Object_Detection. Monk object detection is our take on assembling state of the art object detection, image segmentation, pose estimation algorithms at one place, making them low code and easily configurable on any machine. - Monk GUI - https://github.com/Tessellate-Imaging/Monk_Gui. An interface over these low code tools for non coders.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Proposed is an algorithm that uses computer vision, combined with a modified Rubine classifier, to allow arbitrary N-sided polygons as accepted sketches in real-time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Show Facebook Computer Vision Tags

    Show Facebook Computer Vision Tags

    Chrome Extension that displays automated image tags from Facebook

    Show Facebook Computer Vision Tags is a Chrome (and Firefox) browser extension created to expose and overlay the automatically generated image tags that Facebook applies to photos in users’ feeds. Since Facebook uses a computer-vision model to analyse user-uploaded images and generate alt-text tags for accessibility (e.g., “Image may contain: golf, grass, outdoor and nature”), this extension surfaces those hidden tags directly in the UI—revealing what kind of information Facebook infers about images (objects present, activities being done, environment). The purpose is educational and somewhat cautionary: to help users understand the scope of visual inference and privacy issues. Once installed, the extension overlays those tags on images in the timeline, making visible what is typically hidden metadata. The project is relatively lightweight but has garnered attention due to its privacy transparency angle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The top-rated AI recruiting platform for faster, smarter hiring. Icon
    The top-rated AI recruiting platform for faster, smarter hiring.

    Humanly is an AI recruiting platform that automates candidate conversations, screening, and scheduling.

    Humanly is an AI-first recruiting platform that helps talent teams hire in days, not months—without adding headcount. Our intuitive CRM pairs with powerful agentic AI to engage and screen every candidate instantly, surfacing top talent fast. Built on insights from over 4 million candidate interactions, Humanly delivers speed, structure, and consistency at scale—engaging 100% of interested candidates and driving pipeline growth through targeted outreach and smart re-engagement. We integrate seamlessly with all major ATSs to reduce manual work, improve data flow, and enhance recruiter efficiency and candidate experience. Independent audits ensure our AI remains fair and bias-free, so you can hire confidently.
    Learn More
  • 5
    tracking.js

    tracking.js

    A modern approach for Computer Vision on the web

    The tracking.js library brings different computer vision algorithms and techniques into the browser environment. By using modern HTML5 specifications, we enable you to do real-time color tracking, face detection and much more, all that with a lightweight core (~7 KB) and intuitive interface. To get started, download the project. This project includes all of the tracking.js examples, source code dependencies you'll need to get started. Unzip the project somewhere on your local drive. The package includes an initial version of the project you'll be working with. While you're working, you'll need a basic HTTP server to serve your pages. Test out the web server by loading the finished version of the project. The main goal of tracking.js is to provide those complex techniques in a simple and intuitive way on the web. We believe computer vision is important to improve people's life, bringing it to the web will make this future a reality a lot faster.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next