[go: up one dir, main page]

Showing 2 open source projects for "snap7-full"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • The #1 AI-Powered eLearning Platform Icon
    The #1 AI-Powered eLearning Platform

    For users seeking a platform to generate online courses using AI

    Transform your content into engaging eLearning experiences with Coursebox, the #1 AI-powered eLearning authoring tool. Our platform automates the course creation process, allowing you to design a structured course in seconds. Simply make edits, add any missing elements, and your course is ready to go. Whether you want to publish privately, share publicly, sell your course, or export it to your LMS, Coursebox has you covered.
    Learn More
  • 1
    covid19model

    covid19model

    Code for modelling estimated deaths and cases for COVID19

    ...This is the release related to our Tiers paper, where we use the latent factor model to estimate the effectiveness of tiers systems in England. Peer-reviewed version is to be out soon. All other code is still the same for previous releases. The code should be run in full mode to obtain credible results. Not running a full run to estimate anything is not recommended and discouraged. Only a full run should be used to get results.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Reproducible-research

    Reproducible-research

    A Reproducible Data Analysis Workflow with R Markdown, Git, Make, etc.

    ...It combines the benefits of various open-source software tools including R Markdown, Git, Make, and Docker, whose interplay ensures seamless integration of version management, dynamic report generation conforming to various journal styles, and full cross-platform and long-term computational reproducibility. The workflow ensures meeting the primary goals that 1) the reporting of statistical results is consistent with the actual statistical results (dynamic report generation), 2) the analysis exactly reproduces at a later point in time even if the computing platform or software is changed (computational reproducibility), and 3) changes at any time (during development and post-publication) are tracked, tagged, and documented while earlier versions of both data and code remain accessible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next