[go: up one dir, main page]

Showing 2 open source projects for "squeeze"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Quality and compliance software for growing life science companies Icon
    Quality and compliance software for growing life science companies

    Unite quality management, product lifecycle, and compliance intelligence to stay continuously audit-ready and accelerate market entry

    Automate gap analysis across FDA, ISO 13485, MDR, and 28+ regulatory standards. Cross-map evidence once, reuse across submissions. Get real-time risk alerts and board-ready dashboards, so you can expand into new markets with confidence
    Learn More
  • 1
    U-Net Fusion RFI

    U-Net Fusion RFI

    U-Net for RFI Detection based on @jakeret's implementation

    ...The primary improvements to this code base include a training and evaluation framework, along with a fusion based approach to detection, combining a number of models (currently hard coded to two trained models) along with Sum Threshold as an additional "expert." Additional work is being done to add custom layers to this model for further experimentation, including Squeeze/Excitation layers (unimplemented.) Sum Threshold (in fusion as an expert, and in testing as a comparison) requires the use of AOFlagger by Andre Offringa. You can find this code at https://gitlab.com/aroffringa/aoflagger. This project will use the aoflagger program within the code, so you may need to ensure that any environment variables are set for aoflagger before use. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. There are too many symbolic function wrappers already. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next