[go: up one dir, main page]

Showing 2 open source projects for "pinn"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • A warehouse and inventory management software that scales with your business. Icon
    A warehouse and inventory management software that scales with your business.

    For leading 3PLs and high-volume brands searching for an advanced WMS

    Logiwa is a leader in cloud-native fulfillment technology, revolutionizing high-volume fulfillment for third-party logistics (3PLs), B2B and B2C fulfillment networks, and direct-to-consumer brands. Our flagship product, Logiwa IO, is an advanced Fulfillment Management System (FMS) designed to scale operations in the digital era. Logiwa elevates digital warehousing to new heights, ensuring dynamic and efficient fulfillment processes. Our commitment to AI-driven technology, combined with a focus on customer-centricity, equips businesses to adeptly navigate and excel in rapidly changing market landscapes. Discover the future of smart fulfillment and how you can fulfill brilliantly with Logiwa IO.
    Learn More
  • 1
    DeepXDE

    DeepXDE

    A library for scientific machine learning & physics-informed learning

    ...Comput. Phys.] PINN with hard constraints (hPINN): solving inverse design/topology optimization [SIAM J. Sci. Comput.] Residual-based adaptive sampling [SIAM Rev., arXiv] Gradient-enhanced PINN (gPINN) [Comput. Methods Appl. Mech. Eng.] PINN with multi-scale Fourier features [Comput. Methods Appl. Mech. Eng.]
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    NeuralPDE.jl

    NeuralPDE.jl

    Physics-Informed Neural Networks (PINN) Solvers

    NeuralPDE.jl is a Julia library for solving partial differential equations (PDEs) using physics-informed neural networks and scientific machine learning. Built on top of the SciML ecosystem, it provides a flexible and composable interface for defining PDEs and training neural networks to approximate their solutions. NeuralPDE.jl enables hybrid modeling, data-driven discovery, and fast PDE solvers in high dimensions, making it suitable for scientific research and engineering applications.
    Downloads: 8 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next