[go: up one dir, main page]

Browse free open source Python AI Image Generators and projects below. Use the toggles on the left to filter open source Python AI Image Generators by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • One platform for global hiring and contractor management. Icon
    One platform for global hiring and contractor management.

    For mid-sized companies hiring independent contractors

    TFY unifies applicant tracking, team onboarding, compliance, contractor payments, and billing automation in a single, powerful platform, eliminating the need for multiple disconnected tools.
    Learn More
  • 1
    AUTOMATIC1111 Stable Diffusion web UI
    AUTOMATIC1111's stable-diffusion-webui is a powerful, user-friendly web interface built on the Gradio library that allows users to easily interact with Stable Diffusion models for AI-powered image generation. Supporting both text-to-image (txt2img) and image-to-image (img2img) generation, this open-source UI offers a rich feature set including inpainting, outpainting, attention control, and multiple advanced upscaling options. With a flexible installation process across Windows, Linux, and Apple Silicon, plus support for GPUs and CPUs, it caters to a wide range of users—from hobbyists to professionals. The interface also supports prompt editing, batch processing, custom scripts, and many community extensions, making it a highly customizable and continually evolving platform for creative AI art generation.
    Downloads: 274 This Week
    Last Update:
    See Project
  • 2
    Fooocus

    Fooocus

    Focus on prompting and generating

    Fooocus is an open-source image generation software that simplifies the process of creating images from text prompts. Built on Gradio and leveraging Stable Diffusion XL, Fooocus eliminates the need for manual parameter tweaking, allowing users to focus solely on crafting prompts. It offers a user-friendly interface with minimal setup, making advanced image synthesis accessible to a broader audience.
    Downloads: 206 This Week
    Last Update:
    See Project
  • 3
    ComfyUI

    ComfyUI

    The most powerful and modular diffusion model GUI, api and backend

    The most powerful and modular diffusion model is GUI and backend. This UI will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart-based interface. We are a team dedicated to iterating and improving ComfyUI, supporting the ComfyUI ecosystem with tools like node manager, node registry, cli, automated testing, and public documentation. Open source AI models will win in the long run against closed models and we are only at the beginning. Our core mission is to advance and democratize AI tooling. We believe that the future of AI tooling is open-source and community-driven.
    Downloads: 191 This Week
    Last Update:
    See Project
  • 4
    FLUX.2

    FLUX.2

    Official inference repo for FLUX.2 models

    FLUX.2 is a state-of-the-art open-weight image generation and editing model released by Black Forest Labs aimed at bridging the gap between research-grade capabilities and production-ready workflows. The model offers both text-to-image generation and powerful image editing, including editing of multiple reference images, with fidelity, consistency, and realism that push the limits of what open-source generative models have achieved. It supports high-resolution output (up to ~4 megapixels), which allows for photography-quality images, detailed product shots, infographics or UI mockups rather than just low-resolution drafts. FLUX.2 is built with a modern architecture (a flow-matching transformer + a revamped VAE + a strong vision-language encoder), enabling strong prompt adherence, correct rendering of text/typography in images, reliable lighting, layout, and physical realism, and consistent style/character/product identity across multiple generations or edits.
    Downloads: 56 This Week
    Last Update:
    See Project
  • DataHub is the leading open-source data catalog helping teams discover, understand, and govern their data assets. Icon
    DataHub is the leading open-source data catalog helping teams discover, understand, and govern their data assets.

    Modern Data Catalog and Metadata Platform

    Built on an open source foundation with a thriving community of 13,000+ members, DataHub gives you unmatched flexibility to customize and extend without vendor lock-in. DataHub Cloud is a modern metadata platform with REST and GraphQL APIs that optimize performance for complex queries, essential for AI-ready data management and ML lifecycle support.
    Learn More
  • 5
    FastSD CPU

    FastSD CPU

    Fast stable diffusion on CPU and AI PC

    FastSD CPU is an optimized fork of Stable Diffusion designed to run efficiently on CPUs and devices without dedicated GPUs by leveraging Latent Consistency Models and Adversarial Diffusion Distillation techniques that accelerate inference. It focuses on bringing fast text-to-image generation to mainstream hardware like desktop CPUs, lower-end laptops, or edge devices without requiring high-end graphics processors. The repository contains multiple interfaces including a desktop GUI for simple generation, an advanced web-based UI with support for extensions like LoRA and ControlNet, and a command-line interface for scripted usage or server deployments. With support for performance-oriented libraries such as OpenVINO and hardware acceleration on platforms like Intel AI PCs, FastSD CPU aims to shrink generation times dramatically compared with naive CPU implementations.
    Downloads: 37 This Week
    Last Update:
    See Project
  • 6
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    InvokeAI is an implementation of Stable Diffusion, the open source text-to-image and image-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. This fork is supported across Linux, Windows and Macintosh. Linux users can use either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm driver). We do not recommend the GTX 1650 or 1660 series video cards. They are unable to run in half-precision mode and do not have sufficient VRAM to render 512x512 images.
    Downloads: 26 This Week
    Last Update:
    See Project
  • 7
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models. Stability AI's approach to image synthesis has contributed to creating detailed, scalable images while maintaining efficiency.
    Downloads: 228 This Week
    Last Update:
    See Project
  • 8
    Qwen-Image

    Qwen-Image

    Qwen-Image is a powerful image generation foundation model

    Qwen-Image is a powerful 20-billion parameter foundation model designed for advanced image generation and precise editing, with a particular strength in complex text rendering across diverse languages, especially Chinese. Built on the MMDiT architecture, it achieves remarkable fidelity in integrating text seamlessly into images while preserving typographic details and layout coherence. The model excels not only in text rendering but also in a wide range of artistic styles, including photorealistic, impressionist, anime, and minimalist aesthetics. Qwen-Image supports sophisticated editing tasks such as style transfer, object insertion and removal, detail enhancement, and even human pose manipulation, making it suitable for both professional and casual users. It also includes advanced image understanding capabilities like object detection, semantic segmentation, depth and edge estimation, and novel view synthesis.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 9
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Downloads: 419 This Week
    Last Update:
    See Project
  • Multi-Entity Cloud Accounting Software for Growing Businesses Icon
    Multi-Entity Cloud Accounting Software for Growing Businesses

    Built for small to midsize businesses that have outgrown entry-level accounting or legacy ERP solutions.

    Built natively on the Microsoft Power Platform (Dynamics 365), Gravity delivers robust multi-entity financial management with seamless integration to Microsoft 365, Power BI, Teams + Copilot — no third-party add-ons required.
    Learn More
  • 10
    HunyuanImage-3.0

    HunyuanImage-3.0

    A Powerful Native Multimodal Model for Image Generation

    HunyuanImage-3.0 is a powerful, native multimodal text-to-image generation model released by Tencent’s Hunyuan team. It unifies multimodal understanding and generation in a single autoregressive framework, combining text and image modalities seamlessly rather than relying on separate image-only diffusion components. It uses a Mixture-of-Experts (MoE) architecture with many expert subnetworks to scale efficiently, deploying only a subset of experts per token, which allows large parameter counts without linear inference cost explosion. The model is intended to be competitive with closed-source image generation systems, aiming for high fidelity, prompt adherence, fine detail, and even “world knowledge” reasoning (i.e. leveraging context, semantics, or common sense in generation). The GitHub repo includes code, scripts, model loading instructions, inference utilities, prompt handling, and integration with standard ML tooling (e.g. Hugging Face / Transformers).
    Downloads: 10 This Week
    Last Update:
    See Project
  • 11
    website-to-gif

    website-to-gif

    Turn your website into a GIF

    This Github Action automatically creates an animated GIF or WebP from a given web page to display on your project README (or anywhere else). In your GitHub repo, create a workflow file or extend an existing one. You have to also include a step to checkout and commit to the repo. You can use the following example gif.yml. Make sure to modify the url value and add any other input you want to use. WebP rendering will take a lot of time to benefit from lossless quality and file size optimization.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 12
    PaddleNLP

    PaddleNLP

    Easy-to-use and powerful NLP library with Awesome model zoo

    PaddleNLP It is a natural language processing development library for flying paddles, with Easy-to-use text area API, Examples of applications for multiple scenarios, and High-performance distributed training Three major features, aimed at improving the modeling efficiency of the flying oar developer's text field, aiming to improve the developer's development efficiency in the text field, and provide rich examples of NLP applications. Provide rich industry-level pre-task capabilities Taskflow And process-wide text area API: Support for the loading of rich Chinese data sets Dataset API, can flexibly and efficiently complete data pretreatment Data API, Preset 60 + pre-training word vector Embedding API, Providing 100 + pre-training model Transformer API Wait, the efficiency of NLP task modeling can be greatly improved.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 13
    ChatFred

    ChatFred

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting, image generation and more. Access ChatGPT, DALL·E 2, and other OpenAI models. Language models often give wrong information. Verify answers if they are important. Talk with ChatGPT via the cf keyword. Answers will show as Large Type. Alternatively, use the Universal Action, Fallback Search, or Hotkey. To generate text with InstructGPT models and see results in-line, use the cft keyword. ⤓ Install on the Alfred Gallery or download it over GitHub and add your OpenAI API key. If you have used ChatGPT or DALL·E 2, you already have an OpenAI account. Otherwise, you can sign up here - You will receive $5 in free credit, no payment data is required. Afterward you can create your API key. To start a conversation with ChatGPT either use the keyword cf, setup the workflow as a fallback search in Alfred or create your custom hotkey to directly send the clipboard content to ChatGPT.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 14
    Diffusers

    Diffusers

    State-of-the-art diffusion models for image and audio generation

    Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions. State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code. Interchangeable noise schedulers for different diffusion speeds and output quality. Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. We recommend installing Diffusers in a virtual environment from PyPi or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    FLUX.1

    FLUX.1

    Official inference repo for FLUX.1 models

    FLUX.1 repository contains inference code and tooling for the FLUX.1 text-to-image diffusion models, enabling developers and researchers to generate and edit images from natural-language prompts using open-weight versions of the model on their own hardware or within custom applications. The project is part of a larger family of FLUX models developed by Black Forest Labs, designed to produce high-quality, detailed visuals from text descriptions with competitive prompt adherence and artistic fidelity. This repo focuses on running the open-source model variants efficiently, providing scripts, model loading logic, and examples for local installations, and supports integration with Python toolchains like PyTorch and popular generative pipelines. Users can launch CLI tools to generate images, experiment with different FLUX variants, and extend the base code for research-oriented applications.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    AI Atelier

    AI Atelier

    Based on the Disco Diffusion, version of the AI art creation software

    Based on the Disco Diffusion, we have developed a Chinese & English version of the AI art creation software "AI Atelier". We offer both Text-To-Image models (Disco Diffusion and VQGAN+CLIP) and Text-To-Text (GPT-J-6B and GPT-NEOX-20B) as options. Making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. When a modified version is used to provide a service over a network, the complete source code of the modified version must be made available. Create 2D and 3D animations and not only still frames (from Disco Diffusion v5 and VQGAN Animations). Input audio and images for generation instead of just text. Simplify tool setup process on colab, and enable ‘one-click’ sharing of the generated link to other users. Experiment with the possibilities for multi-user access to the same link.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    Dream Textures

    Dream Textures

    Stable Diffusion built-in to Blender

    Create textures, concept art, background assets, and more with a simple text prompt. Use the 'Seamless' option to create textures that tile perfectly with no visible seam. Texture entire scenes with 'Project Dream Texture' and depth to image. Re-style animations with the Cycles render pass. Run the models on your machine to iterate without slowdowns from a service. Create textures, concept art, and more with text prompts. Learn how to use the various configuration options to get exactly what you're looking for. Texture entire models and scenes with depth to image. Inpaint to fix up images and convert existing textures into seamless ones automatically. Outpaint to increase the size of an image by extending it in any direction. Perform style transfer and create novel animations with Stable Diffusion as a post processing step. Dream Textures has been tested with CUDA and Apple Silicon GPUs. Over 4GB of VRAM is recommended.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    Hunyuan3D-1

    Hunyuan3D-1

    A Unified Framework for Text-to-3D and Image-to-3D Generation

    Hunyuan3D-1 is an earlier version in the same 3D generation line (the unified framework for text-to-3D and image-to-3D tasks) by Tencent Hunyuan. It provides a framework combining shape generation and texture synthesis, enabling users to create 3D assets from images or text conditions. While less advanced than version 2.1, it laid the foundations for the later PBR, higher resolution, and open-source enhancements. (Note: less detailed public documentation was found for Hunyuan3D-1 compared to 2.1.). Community and ecosystem support (e.g. usage via Blender addon for geometry/texture). Integration into user-friendly tools/platforms.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to wherever the command is invoked. If you have enough memory, you can also try using a bigger vision model released by OpenAI for improved generations. You can set the number of classes that you wish to restrict Big Sleep to use for the Big GAN with the --max-classes flag as follows (ex. 15 classes). This may lead to extra stability during training, at the cost of lost expressivity.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as the denoising network) To train DALLE-2 is a 3 step process, with the training of CLIP being the most important. To train CLIP, you can either use x-clip package, or join the LAION discord, where a lot of replication efforts are already underway. Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    GLIDE (Text2Im)

    GLIDE (Text2Im)

    GLIDE: a diffusion-based text-conditional image synthesis model

    glide-text2im is an open source implementation of OpenAI’s GLIDE model, which generates photorealistic images from natural language text prompts. It demonstrates how diffusion-based generative models can be conditioned on text to produce highly detailed and coherent visual outputs. The repository provides both model code and pretrained checkpoints, making it possible for researchers and developers to experiment with text-to-image synthesis. GLIDE includes advanced techniques such as classifier-free guidance, which improves the quality and alignment of generated images with the input text. The project also offers sampling scripts and utilities for exploring how diffusion models can be applied to multimodal tasks. As one of the early diffusion-based text-to-image systems, glide-text2im laid important groundwork for later advances in generative AI research.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    Stable Diffusion WebUI Docker

    Stable Diffusion WebUI Docker

    Easy Docker setup for Stable Diffusion with user-friendly UI

    Stable Diffusion WebUI Docker is a Docker-based repository that simplifies running Stable Diffusion with rich user interfaces by packaging multiple popular web UIs into an easy-to-deploy containerized solution. It integrates leading community UIs like AUTOMATIC1111 and ComfyUI into a Docker Compose setup that can be started with a single command, abstracting away dependency installation and environment configuration. Users can choose which UI profile they want to run — for example, full feature AUTOMATIC1111, CPU-only automatic builds, or ComfyUI workflows — and launch them in a consistent, isolated container environment with automatic model and data caching. The project supports mounting data and output directories so generated images and configurations persist outside the container, and it lets developers customize UI behavior through Docker Compose override files.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    Stable-Dreamfusion

    Stable-Dreamfusion

    Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion

    A pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. This project is a work-in-progress and contains lots of differences from the paper. The current generation quality cannot match the results from the original paper, and many prompts still fail badly! Since the Imagen model is not publicly available, we use Stable Diffusion to replace it (implementation from diffusers). Different from Imagen, Stable-Diffusion is a latent diffusion model, which diffuses in a latent space instead of the original image space. Therefore, we need the loss to propagate back from the VAE's encoder part too, which introduces extra time costs in training. We use the multi-resolution grid encoder to implement the NeRF backbone (implementation from torch-ngp), which enables much faster rendering.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    x-unet

    x-unet

    Implementation of a U-net complete with efficient attention

    Implementation of a U-net complete with efficient attention as well as the latest research findings. For 3d (video or CT / MRI scans).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Core ML Stable Diffusion

    Core ML Stable Diffusion

    Stable Diffusion with Core ML on Apple Silicon

    Run Stable Diffusion on Apple Silicon with Core ML. python_coreml_stable_diffusion, a Python package for converting PyTorch models to Core ML format and performing image generation with Hugging Face diffusers in Python. StableDiffusion, a Swift package that developers can add to their Xcode projects as a dependency to deploy image generation capabilities in their apps. The Swift package relies on the Core ML model files generated by python_coreml_stable_diffusion. Hugging Face ran the conversion procedure on the following models and made the Core ML weights publicly available on the Hub. If you would like to convert a version of Stable Diffusion that is not already available on the Hub, please refer to the Converting Models to Core ML. Log in to or register for your Hugging Face account, generate a User Access Token and use this token to set up Hugging Face API access by running huggingface-cli login in a Terminal window.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next