[go: up one dir, main page]

Browse free open source Python AI Agents and projects below. Use the toggles on the left to filter open source Python AI Agents by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    AppWorld

    AppWorld

    World of apps for benchmarking interactive coding agent

    AppWorld is a framework developed by Stony Brook University's NLP group to simulate environments for training and evaluating dialogue agents in task-oriented applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Atomic Agents

    Atomic Agents

    Building AI agents, atomically

    The Atomic Agents framework is designed around the concept of atomicity to be an extremely lightweight and modular framework for building Agentic AI pipelines and applications without sacrificing developer experience and maintainability. The framework provides a set of tools and agents that can be combined to create powerful applications. It is built on top of Instructor and leverages the power of Pydantic for data and schema validation and serialization. All logic and control flows are written in Python, enabling developers to apply familiar best practices and workflows from traditional software development without compromising flexibility or clarity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AutoGroq

    AutoGroq

    Revolutionizes the way users interact with Autogen

    AutoGroq is a groundbreaking tool that revolutionizes the way users interact with Autogen™ and other AI assistants. By dynamically generating tailored teams of AI agents based on your project requirements, AutoGroq eliminates the need for manual configuration and allows you to tackle any question, problem, or project with ease and efficiency. AutoGroq was born out of the realization that the traditional approach to building AI agents was backwards. Instead of creating agents in anticipation of problems, AutoGroq uses the syntax of the users' needs as the basis for constructing the perfect AI team. It's how we wished Autogen worked from the very beginning. With AutoGroq, a fully configured workflow, team of agents, and skillset are just a few clicks and a couple of minutes away, without any programming necessary. Our rapidly growing user base of nearly 8000 developers is a testament to the power and effectiveness of AutoGroq.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    BISHENG

    BISHENG

    BISHENG is an open LLM devops platform for next generation apps

    BISHENG is an open LLM application DevOps platform, focusing on enterprise scenarios. It has been used by a large number of industry-leading organizations and Fortune 500 companies. "Bi Sheng" was the inventor of movable type printing, which played a vital role in promoting the transmission of human knowledge. We hope that BISHENG can also provide strong support for the widespread implementation of intelligent applications. Everyone is welcome to participate.
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    Burr

    Burr

    Build applications that make decisions. Chatbots, agents, simulations

    Burr makes it easy to develop applications that make decisions (chatbots, agents, simulations, etc...) from simple python building blocks. Burr works well for any application that uses LLMs and can integrate with any of your favorite frameworks. Burr includes a UI that can track/monitor/trace your system in real-time, along with pluggable persisters (e.g. for memory) to save & load application state.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ChatArena

    ChatArena

    ChatArena (or Chat Arena) is a Multi-Agent Language Game Environments

    ChatArena is a library that provides multi-agent language game environments and facilitates research about autonomous LLM agents and their social interactions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    CogAgent

    CogAgent

    An open sourced end-to-end VLM-based GUI Agent

    CogAgent is a 9B-parameter bilingual vision-language GUI agent model based on GLM-4V-9B, trained with staged data curation, optimization, and strategy upgrades to improve perception, action prediction, and generalization across tasks. It focuses on operating real user interfaces from screenshots plus text, and follows a strict input–output format that returns structured actions, grounded operations, and optional sensitivity annotations. The model is designed for agent-style execution rather than freeform chat, maintaining a continuous execution history across steps while requiring a fresh session for each new task. Inference supports BF16 on NVIDIA GPUs, with optional INT8 and INT4 modes available but with noted performance loss at INT4; example CLIs and a web demo illustrate bounding-box outputs and operation categories.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DSPy

    DSPy

    DSPy: The framework for programming—not prompting—language models

    Developed by the Stanford NLP Group, DSPy (Declarative Self-improving Python) is a framework that enables developers to program language models through compositional Python code rather than relying solely on prompt engineering. It facilitates the construction of modular AI systems and provides algorithms for optimizing prompts and weights, enhancing the quality and reliability of language model outputs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Dendrite

    Dendrite

    Tools to build web AI agents that can authenticate

    Dendrite Python SDK is a toolkit for building web AI agents that can authenticate, interact with, and extract data from any website, facilitating web automation tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • ManageEngine Endpoint Central for IT Professionals Icon
    ManageEngine Endpoint Central for IT Professionals

    A one-stop Unified Endpoint Management (UEM) solution

    ManageEngine's Endpoint Central is a Unified Endpoint Management Solution, that takes care of enterprise mobility management (including all features of mobile application management and mobile device management), as well as client management for a diversified range of endpoints - mobile devices, laptops, computers, tablets, server machines etc. With ManageEngine Endpoint Central, users can automate their regular desktop management routines like distributing software, installing patches, managing IT assets, imaging and deploying OS, and more.
    Learn More
  • 10
    Diplomacy Cicero

    Diplomacy Cicero

    Code for Cicero, an AI agent that plays the game of Diplomacy

    The project is the codebase for an AI agent named Cicero developed by Facebook Research. It is designed to play the board game Diplomacy by combining open-domain natural language negotiation with strategic planning. The repository includes training code, model checkpoints, and infrastructure for both language modelling (via the ParlAI framework) and reinforcement learning for strategy agents. It supports two variants: Cicero (which handles full “press” negotiation) and Diplodocus (a variant focused on no-press diplomacy) as described in the README. The codebase is implemented primarily in Python with performance-critical components in C++ (via pybind11 bindings) and is configured to run in a high‐GPU cluster environment. Configuration is managed via protobuf files to define tasks such as self-play, benchmark agent comparisons, and RL training. The project is now archived and read-only, reflecting that it is no longer actively developed but remains publicly available for research use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Director

    Director

    AI video agents framework for next-gen video interactions

    Director is a video database management system designed to organize, search, and retrieve large collections of video content efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    EpicStaff

    EpicStaff

    Open-source platform for AI agents with visual and code control.

    EpicStaff is an open-source multi-agent AI systems platform that enables automation of complex workflows through these capabilities: - Visual AI Workflow Builder for no-code agent creation. - Full Developer Control via API for custom Python tools and logic. - Multi-Agent Orchestration for collaborative agent teams. - Knowledge Injection (RAG) for accurate, context-aware responses. - Memory & Contextual Reasoning for complex, multi-step tasks. - High-Performance Core (FastAPI) for scalable, low-latency responses. It integrates with any LLM and API via custom tools. EpicStaff simplifies building multi-agent systems to achieve your organization's automation goals.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    FastAgency

    FastAgency

    The fastest way to bring multi-agent workflows to production

    FastAgency is a framework that simplifies the creation and deployment of AI-driven automation agents. It provides a structured environment for developing AI assistants capable of handling various business and technical tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    GPT All Star

    GPT All Star

    AI-powered code generation tool for scratch development of web apps

    AI-powered code generation tool for scratch development of web applications with a team collaboration of autonomous AI agents. This is a research project, and its primary value is to explore the possibility of autonomous AI agents.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    GPTme

    GPTme

    Your agent in your terminal, equipped with local tools

    GPTMe is a personal AI chatbot designed for self-reflection, journaling, and productivity, using GPT models to generate personalized insights and responses.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Gemini Fullstack LangGraph Quickstart

    Gemini Fullstack LangGraph Quickstart

    Get started w/ building Fullstack Agents using Gemini 2.5 & LangGraph

    gemini-fullstack-langgraph-quickstart is a fullstack reference application from Google DeepMind’s Gemini team that demonstrates how to build a research-augmented conversational AI system using LangGraph and Google Gemini models. The project features a React (Vite) frontend and a LangGraph/FastAPI backend designed to work together seamlessly for real-time research and reasoning tasks. The backend agent dynamically generates search queries based on user input, retrieves information via the Google Search API, and performs reflective reasoning to identify knowledge gaps. It then iteratively refines its search until it produces a comprehensive, well-cited answer synthesized by the Gemini model. The repository provides both a browser-based chat interface and a command-line script (cli_research.py) for executing research queries directly. For production deployment, the backend integrates with Redis and PostgreSQL to manage persistent memory, streaming outputs, & background task coordination.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Griptape

    Griptape

    Python framework for AI workflows and pipelines with chain of thought

    The Griptape framework provides developers with the ability to create AI systems that operate across two dimensions: predictability and creativity. For predictability, Griptape enforces structures like sequential pipelines, DAG-based workflows, and long-term memory. To facilitate creativity, Griptape safely prompts LLMs with tools (keeping output data off prompt by using short-term memory), which connects them to external APIs and data stores. The framework allows developers to transition between those two dimensions effortlessly based on their use case. Griptape not only helps developers harness the potential of LLMs but also enforces trust boundaries, schema validation, and tool activity-level permissions. By doing so, Griptape maximizes LLMs’ reasoning while adhering to strict policies regarding their capabilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Habitat-Lab

    Habitat-Lab

    A modular high-level library to train embodied AI agents

    Habitat-Lab is a modular high-level library for end-to-end development in embodied AI. It is designed to train agents to perform a wide variety of embodied AI tasks in indoor environments, as well as develop agents that can interact with humans in performing these tasks. Allowing users to train agents in a wide variety of single and multi-agent tasks (e.g. navigation, rearrangement, instruction following, question answering, human following), as well as define novel tasks. Configuring and instantiating a diverse set of embodied agents, including commercial robots and humanoids, specifying their sensors and capabilities. Providing algorithms for single and multi-agent training (via imitation or reinforcement learning, or no learning at all as in SensePlanAct pipelines), as well as tools to benchmark their performance on the defined tasks using standard metrics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    LLMStack

    LLMStack

    No-code multi-agent framework to build LLM Agents, workflows

    LLMStack is a no-code platform for building generative AI agents, workflows and chatbots, connecting them to your data and business processes. Build tailor-made generative AI agents, applications and chatbots that cater to your unique needs by chaining multiple LLMs. Seamlessly integrate your own data, internal tools and GPT-powered models without any coding experience using LLMStack's no-code builder. Trigger your AI chains from Slack or Discord. Deploy to the cloud or on-premise.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    LangChain Apps on Production with Jina

    LangChain Apps on Production with Jina

    Langchain Apps on Production with Jina & FastAPI

    Jina is an open-source framework for building scalable multi-modal AI apps on Production. LangChain is another open-source framework for building applications powered by LLMs. long-chain-serve helps you deploy your LangChain apps on Jina AI Cloud in a matter of seconds. You can benefit from the scalability and serverless architecture of the cloud without sacrificing the ease and convenience of local development. And if you prefer, you can also deploy your LangChain apps on your own infrastructure to ensure data privacy. With long chain-serve, you can craft REST/WebSocket APIs, spin up LLM-powered conversational Slack bots, or wrap your LangChain apps into FastAPI packages on the cloud or on-premises.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Langroid

    Langroid

    Harness LLMs with Multi-Agent Programming

    Given the remarkable abilities of recent Large Language Models (LLMs), there is an unprecedented opportunity to build intelligent applications powered by this transformative technology. The top question for any enterprise is: how best to harness the power of LLMs for complex applications? For technical and practical reasons, building LLM-powered applications is not as simple as throwing a task at an LLM system and expecting it to do it. Effectively leveraging LLMs at scale requires a principled programming framework. In particular, there is often a need to maintain multiple LLM conversations, each instructed in different ways, and "responsible" for different aspects of a task.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Magentic UI

    Magentic UI

    A research prototype of a human-centered web agent

    Magentic-UI is a research prototype developed by Microsoft that serves as a human-centered interface powered by a multi-agent system. It enables users to automate complex web tasks, such as browsing, form filling, and data analysis, while maintaining control over the process. The system emphasizes transparency and user involvement, making it suitable for tasks requiring both automation and human oversight.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Multi-Agent Particle Envs

    Multi-Agent Particle Envs

    Code for a multi-agent particle environment used in a paper

    Multiagent Particle Environments is a lightweight framework for simulating multi-agent reinforcement learning tasks in a continuous observation space with discrete action settings. It was originally developed by OpenAI and used in the influential paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The environment provides simple particle-based worlds with simulated physics, where agents can move, communicate, and interact with each other. Scenarios are designed to model cooperative, competitive, and mixed interactions among agents, making it useful for testing algorithms in multi-agent settings. The project includes built-in scenarios such as navigation to landmarks, cooperative tasks, and adversarial setups. Although archived, its concepts and code structure remain foundational for more advanced libraries like PettingZoo, which extended and maintained this environment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Nerve

    Nerve

    The Simple Agent Development Kit

    Nerve is a developer-friendly Agent Development Kit (ADK) that utilizes YAML and a CLI to define, run, orchestrate, and evaluate LLM-driven agents. It supports declarative setups, tool integration, workflow pipelines, and both MCP client and server roles. Nerve is a simple yet powerful Agent Development Kit (ADK) to build, run, evaluate, and orchestrate LLM-based agents using just YAML and a CLI. It’s designed for technical users who want programmable, auditable, and reproducible automation using large language models. Define agents using a clean YAML format: system prompt, task, tools, and variables — all in one file.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Nextpy

    Nextpy

    Self-Modifying Framework from the Future

    NextPy is a Python-based framework for building AI-powered automation agents, allowing developers to create intelligent, rule-based workflows.
    Downloads: 0 This Week
    Last Update:
    See Project