[go: up one dir, main page]

Browse free open source Python AI Models and projects below. Use the toggles on the left to filter open source Python AI Models by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 1
    HunyuanWorld-Mirror

    HunyuanWorld-Mirror

    Fast and Universal 3D reconstruction model for versatile tasks

    HunyuanWorld-Mirror focuses on fast, universal 3D reconstruction that can ingest varied inputs and produce multiple kinds of 3D outputs. The model accepts combinations of images, camera intrinsics and poses, or even depth cues, then reconstructs consistent 3D geometry suitable for downstream rendering or editing. The pipeline emphasizes both speed and flexibility so creators can go from casual captures to assets without elaborate capture rigs. Outputs can include point clouds, estimated camera parameters, and other 3D representations that plug into typical graphics workflows. The project sits within a broader family of Hunyuan models that explore world generation and 3D-consistent understanding, and this mirror variant makes the reconstruction stack easier to test. It’s attractive for rapid prototyping of scenes, environment scans, or reference assets when you need repeatable 3D results from ordinary media.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Improved GAN

    Improved GAN

    Code for the paper "Improved Techniques for Training GANs"

    Improved-GAN is the official code release from OpenAI accompanying the research paper Improved Techniques for Training GANs. It provides implementations of experiments conducted on datasets such as MNIST, SVHN, CIFAR-10, and ImageNet. The project focuses on demonstrating enhanced training methods for Generative Adversarial Networks, addressing stability and performance issues that were common in earlier GAN models. The repository includes training scripts, evaluation methods, and pretrained configurations for reproducing experimental results. By offering structured experiments across multiple datasets, it allows researchers to study and replicate the improvements described in the paper. Although the project is archived and not actively maintained, it remains a reference point in the history of GAN research, influencing subsequent model training approaches.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    PokeeResearch-7B

    PokeeResearch-7B

    Pokee Deep Research Model Open Source Repo

    PokeeResearchOSS provides an open-source, agentic “deep research” model centered on a 7B backbone that can browse, read, and synthesize current information from the web. Instead of relying only on static training data, the agent performs searches, visits pages, and extracts evidence before forming answers to complex queries. It is built to operate end-to-end: planning a research strategy, gathering sources, reasoning over conflicting claims, and writing a grounded response. The repository includes evaluation results on multi-step QA and research benchmarks, illustrating how web-time context boosts accuracy. Because the system is modular, you can swap the search component, reader, or policy to fit private deployments or different data domains. It’s aimed at developers who want a transparent, hackable research agent they can run locally or wire into existing workflows.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Qwen-2.5-VL

    Qwen-2.5-VL

    Qwen2.5-VL is the multimodal large language model series

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation (exceeding 8,000 tokens), and structured data comprehension, such as tables and JSON formats. They support context lengths up to 128,000 tokens and offer multilingual capabilities in over 29 languages, including Chinese, English, French, Spanish, and more. The models are open-source under the Apache 2.0 license, with resources and documentation available on platforms like Hugging Face and ModelScope.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 5
    Qwen3-Omni

    Qwen3-Omni

    Qwen3-omni is a natively end-to-end, omni-modal LLM

    Qwen3-Omni is a natively end-to-end multilingual omni-modal foundation model that processes text, images, audio, and video and delivers real-time streaming responses in text and natural speech. It uses a Thinker-Talker architecture with a Mixture-of-Experts (MoE) design, early text-first pretraining, and mixed multimodal training to support strong performance across all modalities without sacrificing text or image quality. The model supports 119 text languages, 19 speech input languages, and 10 speech output languages. It achieves state-of-the-art results: across 36 audio and audio-visual benchmarks, it hits open-source SOTA on 32 and overall SOTA on 22, outperforming or matching strong closed-source models such as Gemini-2.5 Pro and GPT-4o. To reduce latency, especially in audio/video streaming, Talker predicts discrete speech codecs via a multi-codebook scheme and replaces heavier diffusion approaches.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and action into a single agentic model capable of following abstract goals. It includes simulation environments, datasets, and benchmarks for testing grounded understanding, imitation learning, and decision-making. The system’s modular pipeline supports both imitation-based and reinforcement-based training strategies, allowing flexible experimentation with different embodiments and tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Stable Diffusion WebUI Forge

    Stable Diffusion WebUI Forge

    Stable Diffusion WebUI Forge is a platform on top of Stable Diffusion

    Stable Diffusion WebUI Forge is a performance- and feature-oriented fork of the popular AUTOMATIC1111 interface that experiments with new backends, memory optimizations, and UX improvements. It targets heavy users and researchers who push large models, control nets, and high-resolution pipelines where default settings can become bottlenecks. The fork typically introduces toggles for scheduler behavior, attention implementations, caching, and precision modes to reach better speed or quality on given hardware. It also focuses on stability during long sessions, aiming to reduce out-of-memory failures and provide clearer diagnostics when they occur. The UI surfaces advanced options in a way that remains recognizable to WebUI users, so migration costs are low while gaining experimental features. In practice, Forge serves as a proving ground for ideas that may later influence upstream tools, giving power users early access to cutting-edge techniques.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Stable-Dreamfusion

    Stable-Dreamfusion

    Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion

    A pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. This project is a work-in-progress and contains lots of differences from the paper. The current generation quality cannot match the results from the original paper, and many prompts still fail badly! Since the Imagen model is not publicly available, we use Stable Diffusion to replace it (implementation from diffusers). Different from Imagen, Stable-Diffusion is a latent diffusion model, which diffuses in a latent space instead of the original image space. Therefore, we need the loss to propagate back from the VAE's encoder part too, which introduces extra time costs in training. We use the multi-resolution grid encoder to implement the NeRF backbone (implementation from torch-ngp), which enables much faster rendering.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support for dynamic scene handling, dense point cloud export, video-based reconstruction (1000+ frames), and integration with Gaussian Splatting pipelines. It leverages tools like PyCOLMAP, poselib, LightGlue, and PyTorch3D for feature matching, pose estimation, and visualization. With minimal configuration, users can process single scenes or full video sequences, apply motion masks to exclude moving objects, and train neural radiance or splatting models directly from reconstructed outputs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 10
    Warlock-Studio

    Warlock-Studio

    Suite with Real-ESRGAN, BSRGAN , IRCNN, GFPGAN & RIFE. v4.3

    Version 4.3 – Summary Fixed missing audio in generated videos. Corrected dark output issue in GFPGAN face restoration. Improved overall stability and synchronization. See CHANGELOG.md on GitHub for full details.
    Leader badge">
    Downloads: 36 This Week
    Last Update:
    See Project
  • 11
    DiffRhythm

    DiffRhythm

    Di♪♪Rhythm: Blazingly Fast & Simple End-to-End Song Generation

    DiffRhythm is an open-source, diffusion-based model designed to generate full-length songs. Focused on music creation, it combines advanced AI techniques to produce coherent and creative audio compositions. The model utilizes a latent diffusion architecture, making it capable of producing high-quality, long-form music. It can be accessed on Huggingface, where users can interact with a demo or download the model for further use. DiffRhythm offers tools for both training and inference, and its flexibility makes it ideal for AI-based music production and research in music generation.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 12
    CO3D (Common Objects in 3D)

    CO3D (Common Objects in 3D)

    Tooling for the Common Objects In 3D dataset

    CO3Dv2 (Common Objects in 3D, version 2) is a large-scale 3D computer vision dataset and toolkit from Facebook Research designed for training and evaluating category-level 3D reconstruction methods using real-world data. It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction. CO3Dv2 enables research in multi-view 3D reconstruction, novel view synthesis, and geometry-aware representation learning. Each of the thousands of sequences in CO3Dv2 captures a common object (from categories like cars, chairs, or plants) from multiple real-world viewpoints. The dataset includes RGB images, depth maps, masks, and camera poses for each frame, along with pre-defined training, validation, and testing splits for both few-view and many-view reconstruction tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Chinese-LLaMA-Alpaca 2

    Chinese-LLaMA-Alpaca 2

    Chinese LLaMA-2 & Alpaca-2 Large Model Phase II Project

    This project is developed based on the commercially available large model Llama-2 released by Meta. It is the second phase of the Chinese LLaMA&Alpaca large model project. The Chinese LLaMA-2 base model and the Alpaca-2 instruction fine-tuning large model are open-sourced. These models expand and optimize the Chinese vocabulary on the basis of the original Llama-2, use large-scale Chinese data for incremental pre-training, and further improve the basic semantics and command understanding of Chinese. Performance improvements. The related model supports FlashAttention-2 training, supports 4K context and can be extended up to 18K+ through the NTK method.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Claude Code Security Review

    Claude Code Security Review

    An AI-powered security review GitHub Action using Claude

    The claude-code-security-review repository implements a GitHub Action that uses Claude (via the Anthropic API) to perform semantic security audits of code changes in pull requests. Rather than relying purely on pattern matching or static analysis, this action feeds diffs and surrounding context to Claude to reason about potential vulnerabilities (e.g. injection, misconfigurations, secrets exposure, etc). When a PR is opened, the action analyzes only the changed files (diff-aware scanning), generates findings (with explanations, severity, and remediation suggestions), filters false positives using custom prompt logic, and posts comments directly on the PR. It supports configuration inputs (which files/directories to skip, model timeout, whether to comment on the PR, etc). The tool is language-agnostic (it doesn’t need language-specific parsers), uses contextual understanding rather than simplistic rules, and aims to reduce noise with smarter filtering.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    CodeGeeX2 is the second-generation multilingual code generation model from ZhipuAI, built upon the ChatGLM2-6B architecture and trained on 600B code tokens. Compared to the first generation, it delivers a significant boost in programming ability across multiple languages, outperforming even larger models like StarCoder-15B in some benchmarks despite having only 6B parameters. The model excels at code generation, translation, summarization, debugging, and comment generation, and it supports over 100 programming languages. With improved inference efficiency, quantization options, and multi-query/flash attention, CodeGeeX2 achieves faster generation speeds and lightweight deployment, requiring as little as 6GB GPU memory at INT4 precision. Its backend powers the CodeGeeX IDE plugins for VS Code, JetBrains, and other editors, offering developers interactive AI assistance with features like infilling and cross-file completion.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    ControlNet

    ControlNet

    Let us control diffusion models

    ControlNet is a neural network architecture designed to add conditional control to text-to-image diffusion models. Rather than training from scratch, ControlNet “locks” the weights of a pre-trained diffusion model and introduces a parallel trainable branch that learns additional conditions—like edges, depth maps, segmentation, human pose, scribbles, or other guidance signals. This allows the system to control where and how the model should focus during generation, enabling users to steer layout, structure, and content more precisely than prompt text alone. The project includes many trained model variants that accept different types of conditioning (e.g., canny edge input, normal maps, skeletal pose) and produce improved fidelity in stable diffusion outputs. It is widely adopted in the community as a go-to tool for semi-automatic image generation workflows, especially when users want structure plus creative freedom.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval, detection, and segmentation—often requiring little or no fine-tuning. The repository includes code for training, evaluating, and feature extraction, with utilities to run k-NN or linear evaluation baselines to assess representation quality. Pretrained checkpoints cover multiple model sizes so practitioners can trade accuracy for speed and memory depending on their deployment constraints.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    GLM-130B

    GLM-130B

    GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023)

    GLM-130B is an open bilingual (English and Chinese) dense language model with 130 billion parameters, released by the Tsinghua KEG Lab and collaborators as part of the General Language Model (GLM) series. It is designed for large-scale inference and supports both left-to-right generation and blank filling, making it versatile across NLP tasks. Trained on over 400 billion tokens (200B English, 200B Chinese), it achieves performance surpassing GPT-3 175B, OPT-175B, and BLOOM-176B on multiple benchmarks, while also showing significant improvements on Chinese datasets compared to other large models. The model supports efficient inference via INT8 and INT4 quantization, reducing hardware requirements from 8× A100 GPUs to as little as a single server with 4× RTX 3090s. Built on the SwissArmyTransformer (SAT) framework and compatible with DeepSpeed and FasterTransformer, it supports high-speed inference (up to 2.5× faster) and reproducible evaluation across 30+ benchmark tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    GPT-2 Output Dataset

    GPT-2 Output Dataset

    Dataset of GPT-2 outputs for research in detection, biases, and more

    The GPT-2 Output Dataset is a large collection of model-generated text, released by OpenAI alongside the GPT-2 research paper to study the behaviors and limitations of large language models. It contains 250,000 samples of GPT-2 outputs, generated with different sampling strategies such as top-k truncation, to highlight the diversity and quality of model completions. The dataset also includes corresponding human-written text for comparison, enabling researchers to explore methods for distinguishing machine-generated content from human-authored text. The repository provides scripts and metadata for working with the dataset, with the goal of supporting research in areas like detection, evaluation of text coherence, and analysis of generative models. While no active development is expected, the dataset remains a useful benchmark for tasks involving text classification, style analysis, and generative model evaluation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Granite TSFM

    Granite TSFM

    Foundation Models for Time Series

    granite-tsfm collects public notebooks, utilities, and serving components for IBM’s Time Series Foundation Models (TSFM), giving practitioners a practical path from data prep to inference for forecasting and anomaly-detection use cases. The repository focuses on end-to-end workflows: loading data, building datasets, fine-tuning forecasters, running evaluations, and serving models. It documents the currently supported Python versions and points users to where the core TSFM models are hosted and how to wire up service components. Issues and examples in the tracker illustrate common tasks such as slicing inference windows or using pipeline helpers that return pandas DataFrames, grounding the library in day-to-day time-series operations. The ecosystem around TSFM also includes a community cookbook of “recipes” that showcase capabilities and patterns. Overall, the repo is designed as a hands-on companion for teams adopting time-series foundation models in production-leaning settings.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    HunyuanVideo-Avatar

    HunyuanVideo-Avatar

    Tencent Hunyuan Multimodal diffusion transformer (MM-DiT) model

    HunyuanVideo-Avatar is a multimodal diffusion transformer (MM-DiT) model by Tencent Hunyuan for animating static avatar images into dynamic, emotion-controllable, and multi-character dialogue videos, conditioned on audio. It addresses challenges of motion realism, identity consistency, and emotional alignment. Innovations include a character image injection module, an Audio Emotion Module for transferring emotion cues, and a Face-Aware Audio Adapter to isolate audio effects on faces, enabling multiple characters to be animated in a scene. Character image injection module for better consistency between training and inference conditioning. Emotion control by extracting emotion reference images and transferring emotional style into video sequences.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    HunyuanVideo-Foley

    HunyuanVideo-Foley

    Multimodal Diffusion with Representation Alignment

    HunyuanVideo-Foley is a multimodal diffusion model from Tencent Hunyuan for high-fidelity Foley (sound effects) audio generation synchronized to video scenes. It is designed to generate audio that matches both visual content and textual semantic cues, for use in video production, film, advertising, games, etc. The model architecture aligns audio, video, and text representations to produce realistic synchronized soundtracks. Produces high-quality 48 kHz audio output suitable for professional use. Hybrid architecture combining multimodal transformer blocks and unimodal refinement blocks. Temporal alignment via frame-level synchronization modules (e.g. Synchformer).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Map-Anything

    Map-Anything

    MapAnything: Universal Feed-Forward Metric 3D Reconstruction

    Map-Anything is a universal, feed-forward transformer for metric 3D reconstruction that predicts a scene’s geometry and camera parameters directly from visual inputs. Instead of stitching together many task-specific models, it uses a single architecture that supports a wide range of 3D tasks—multi-image structure-from-motion, multi-view stereo, monocular metric depth, registration, depth completion, and more. The model flexibly accepts different input combinations (images, intrinsics, poses, sparse or dense depth) and produces a rich set of outputs including per-pixel 3D points, camera intrinsics, camera poses, ray directions, confidence maps, and validity masks. Its inference path is fully feed-forward with optional mixed-precision and memory-efficient modes, making it practical to scale to long image sequences while keeping latency predictable.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Menagerie

    Menagerie

    A collection of high-quality models for the MuJoCo physics engine

    MuJoCo Menagerie, developed by Google DeepMind, is a curated collection of high-quality simulation models designed for use with the MuJoCo physics engine. It serves as a comprehensive library of accurate and ready-to-use robotic, biomechanical, and mechanical models, ensuring users can perform reliable simulations without having to build or tune models from scratch. The repository aims to improve reproducibility and quality across robotics research by providing verified models that adhere to consistent design and physical standards. Each model directory contains its 3D assets, MJCF XML definitions, licensing information, and example scenes for visualization and testing. The collection spans a wide range of categories including robotic arms, humanoids, quadrupeds, mobile manipulators, drones, and biomechanical systems. Users can access models directly via the robot_descriptions Python package or by cloning the repository for use in interactive MuJoCo simulations.
    Downloads: 1 This Week
    Last Update:
    See Project