[go: up one dir, main page]

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 1
    Stable Diffusion Web UI Extensions

    Stable Diffusion Web UI Extensions

    Extension index for stable-diffusion-webui

    This repository serves as the official index used by the Stable Diffusion Web UI to discover and install extensions. It aggregates metadata for hundreds of community plugins—image utilities, ControlNet tools, upscalers, prompt helpers, animation suites—so users can browse and add capabilities directly from the UI. The index maintains short descriptions, tags, and repository links, enabling quick filtering by purpose or workflow. It also standardizes submission format so extension authors can contribute entries that the Web UI can parse reliably. For end users, this turns the Web UI into a modular platform where new features appear without manual cloning or guesswork. The project effectively coordinates a thriving plugin ecosystem, keeping discovery and updates lightweight and centralized.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    StarSpace

    StarSpace

    Learning embeddings for classification, retrieval and ranking

    StarSpace is a general-purpose embedding-based learning framework that trains embeddings for entities (words, sentences, users, items) under various supervision signals (classification, ranking, matching). Instead of focusing on one task, StarSpace supports multi-task and multi-domain setups—for instance, you can train embeddings so that textual queries match item descriptions, sentences map to labels, or users align with liked items in the same embedding space. The training objective is contrastive: for a given query embedding, positive and negative examples are sampled and the model is optimized to score positive higher than negatives. The library supports a variety of tasks (text classification, nearest-neighbor search, recommendation, entity linking) with simple configuration. It includes efficient batching, negative sampling strategies, and on-the-fly embedding updates.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Style Aligned

    Style Aligned

    Official code for Style Aligned Image Generation via Shared Attention

    StyleAligned is a diffusion-model editing technique and codebase that preserves the visual “style” of an original image while applying new semantic edits driven by text. Instead of fully re-generating an image—and risking changes to lighting, texture, or rendering choices—the method aligns internal features across denoising steps so the target edit inherits the source style. This alignment acts like a constraint on the model’s evolution, steering composition, palette, and brushwork even as objects or attributes change. The result is more consistent edits across a set, which is crucial for workflows like product variations, character sheets, or brand-coherent art. The repository provides reproducible scripts, reference prompts, and guidance for tuning strengths so users can dial in subtle retouches or bolder substitutions. Because it builds on widely used diffusion checkpoints, creators can integrate it without training or dataset collection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Surya

    Surya

    Implementation of the Surya Foundation Model for Heliophysics

    Surya is an open‑source, AI‑based foundation model for heliophysics developed collaboratively by NASA (via the IMPACT AI team) and IBM. Named after the Sanskrit word for “sun,” Surya is trained on nine years of high‑resolution solar imagery from NASA’s Solar Dynamics Observatory (SDO). It is designed to forecast solar phenomena—such as flares, solar wind, irradiance, and active region behavior—by predicting future solar images with a sophisticated long–short vision transformer architecture, thereby enabling improved space weather forecasting. Foresees solar flares, wind, EUV spectra, and active region formation in advance. Achieves approximately 16% improvement in forecasting accuracy over traditional methods. 366-million‑parameter foundation model capturing general-purpose solar representations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 5
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage (~50%) while maintaining precision. High benchmarking performance on tasks like MMLU, MATH, CMMLU, C-Eval, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Tiktoken

    Tiktoken

    tiktoken is a fast BPE tokeniser for use with OpenAI's models

    tiktoken is a high-performance, tokenizer library (based on byte-pair encoding, BPE) designed for use with OpenAI’s models. It handles encoding and decoding text to token IDs efficiently, with minimal overhead. Because tokenization is a fundamental step in preparing text for models, tiktoken is optimized for speed, memory, and correctness in model contexts (e.g. matching OpenAI’s internal tokenization). The repo supports multiple encodings (e.g. “cl100k_base”) and lets users switch encoding names to match different model contexts. It also offers extension mechanisms so that custom encodings can be registered. Internally, it includes the core tokenizer logic (often implemented in Rust or efficient lower-level code), APIs for encoding, decoding, and counting tokens, and binding layers to Python (and sometimes other languages) for easy use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TimeSformer

    TimeSformer

    The official pytorch implementation of our paper

    TimeSformer is a vision transformer architecture for video that extends the standard attention mechanism into spatiotemporal attention. The model alternates attention along spatial and temporal dimensions (or designs variants like divided attention) so that it can capture both appearance and motion cues in video. Because the attention is global across frames, TimeSformer can reason about dependencies across long time spans, not just local neighborhoods. The official implementation in PyTorch provides configurations, pretrained models, and training scripts that make it straightforward to evaluate or fine-tune on video datasets. TimeSformer was influential in showing that pure transformer architectures—without convolutional backbones—can perform strongly on video classification tasks. Its flexible attention design allows experimenting with different factoring (spatial-then-temporal, joint, etc.) to trade off compute, memory, and accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ToMe (Token Merging)

    ToMe (Token Merging)

    A method to increase the speed and lower the memory footprint

    ToMe (Token Merging) is a PyTorch-based optimization framework designed to significantly accelerate Vision Transformer (ViT) architectures without retraining. Developed by researchers at Facebook (Meta AI), ToMe introduces an efficient technique that merges similar tokens within transformer layers, reducing redundant computation while preserving model accuracy. This approach differs from token pruning, which removes background tokens entirely; instead, ToMe merges tokens based on feature similarity, allowing it to compress both foreground and background information efficiently. ToMe integrates seamlessly into existing transformer models such as DeiT, MAE, SWAG, and timm ViTs, offering 2–3x speedups during inference and substantial efficiency gains during training. The method can be applied dynamically at inference time or incorporated into training for improved performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Tracking Any Point (TAP)

    Tracking Any Point (TAP)

    DeepMind model for tracking arbitrary points across videos & robotics

    TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art accuracy and speed on TAP-Vid. RoboTAP demonstrates how TAPIR-style tracks can drive real-world robot manipulation via efficient imitation, and ships with a dataset of annotated robotics videos. The repo provides JAX and PyTorch checkpoints, Colab demos, and a real-time live demo that runs on a GPU to let you select and track points interactively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 10
    UCO3D

    UCO3D

    Uncommon Objects in 3D dataset

    uCO3D is a large-scale 3D vision dataset and toolkit centered on turn-table videos of everyday objects drawn from the LVIS taxonomy. It provides about 170,000 full videos per object instance rather than still frames, along with per-video annotations including object masks, calibrated camera poses, and multiple flavors of point clouds. Each sequence also ships with a precomputed 3D Gaussian Splat reconstruction, enabling fast, differentiable rendering workflows and modern implicit/point-based modeling experiments. The repository includes automated downloaders with checksum verification, fine-grained controls to fetch only selected modalities or super-categories, and a lightweight Python API for loading frames, geometry, and splats on demand. Metadata is indexed in SQLite for quick queries at scale, and helper builders handle alignment, undistortion, frame extraction from videos, and cropping around the object.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Universal Sentence Encoder

    Universal Sentence Encoder

    Encoder of greater-than-word length text trained on a variety of data

    The Universal Sentence Encoder (USE) is a pre-trained deep learning model designed to encode sentences into fixed-length embeddings for use in various natural language processing (NLP) tasks. It leverages Transformer and Deep Averaging Network (DAN) architectures to generate embeddings that capture the semantic meaning of sentences. The model is designed for tasks like sentiment analysis, semantic textual similarity, and clustering, and provides high-quality sentence representations in a computationally efficient manner.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal integration strategies that influenced modern architectures like SlowFast and X3D.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    VaultGemma

    VaultGemma

    VaultGemma: 1B DP-trained Gemma variant for private NLP tasks

    VaultGemma is a sub-1B parameter variant of Google’s Gemma family that is pre-trained from scratch with Differential Privacy (DP), providing mathematically backed guarantees that its outputs do not reveal information about any single training example. Using DP-SGD with a privacy budget across a large English-language corpus (web documents, code, mathematics), it prioritizes privacy over raw utility. The model follows a Gemma-2–style architecture, outputs text from up to 1,024 input tokens, and is intended to be instruction-tuned for downstream language understanding and generation tasks. Training ran on TPU v6e using JAX and Pathways with privacy-preserving algorithms (DP-SGD, truncated Poisson subsampling) and DP scaling laws to balance compute and privacy budgets. Benchmarks on the 1B pre-trained checkpoint show expected utility trade-offs (e.g., HellaSwag 10-shot 39.09, BoolQ 0-shot 62.04, PIQA 0-shot 68.00), reflecting its privacy-first design.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    VibeVoice

    VibeVoice

    VibeVoice: Open-source multi-speaker long-form text-to-speech model

    VibeVoice-1.5B is Microsoft’s frontier open-source text-to-speech (TTS) model designed for generating expressive, long-form, multi-speaker conversational audio such as podcasts. Unlike traditional TTS systems, it excels in scalability, speaker consistency, and natural turn-taking for up to 90 minutes of continuous speech with as many as four distinct speakers. A key innovation is its use of continuous acoustic and semantic speech tokenizers operating at an ultra-low frame rate of 7.5 Hz, enabling high audio fidelity with efficient processing of long sequences. The model integrates a Qwen2.5-based large language model with a diffusion head to produce realistic acoustic details and capture conversational context. Training involved curriculum learning with increasing sequence lengths up to 65K tokens, allowing VibeVoice to handle very long dialogues effectively. Safety mechanisms include an audible disclaimer and imperceptible watermarking in all generated audio to mitigate misuse risks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    VisualGLM-6B

    VisualGLM-6B

    Chinese and English multimodal conversational language model

    VisualGLM-6B is an open-source multimodal conversational language model developed by ZhipuAI that supports both images and text in Chinese and English. It builds on the ChatGLM-6B backbone, with 6.2 billion language parameters, and incorporates a BLIP2-Qformer visual module to connect vision and language. In total, the model has 7.8 billion parameters. Trained on a large bilingual dataset — including 30 million high-quality Chinese image-text pairs from CogView and 300 million English pairs — VisualGLM-6B is designed for image understanding, description, and question answering. Fine-tuning on long visual QA datasets further aligns the model’s responses with human preferences. The repository provides inference APIs, command-line demos, web demos, and efficient fine-tuning options like LoRA, QLoRA, and P-tuning. It also supports quantization down to INT4, enabling local deployment on consumer GPUs with as little as 6.3 GB VRAM.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Watermark Anything

    Watermark Anything

    Official implementation of Watermark Anything with Localized Messages

    Watermark Anything (WAM) is an advanced deep learning framework for embedding and detecting localized watermarks in digital images. Developed by Facebook Research, it provides a robust, flexible system that allows users to insert one or multiple watermarks within selected image regions while maintaining visual quality and recoverability. Unlike traditional watermarking methods that rely on uniform embedding, WAM supports spatially localized watermarks, enabling targeted protection of specific image regions or objects. The model is trained to balance imperceptibility, ensuring minimal visual distortion, with robustness against transformations and edits such as cropping or motion.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    bart-large-cnn

    bart-large-cnn

    Summarization model fine-tuned on CNN/DailyMail articles

    facebook/bart-large-cnn is a large-scale sequence-to-sequence transformer model developed by Meta AI and fine-tuned specifically for abstractive text summarization. It uses the BART architecture, which combines a bidirectional encoder (like BERT) with an autoregressive decoder (like GPT). Pre-trained on corrupted text reconstruction, the model was further trained on the CNN/DailyMail dataset—a collection of news articles paired with human-written summaries. It performs particularly well in generating concise, coherent, and human-readable summaries from longer texts. Its architecture allows it to model both language understanding and generation tasks effectively. The model supports usage in PyTorch, TensorFlow, and JAX, and is integrated with the Hugging Face pipeline API for simple deployment. Due to its size and performance, it's widely used in real-world summarization applications such as news aggregation, legal document condensing, and content creation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    bge-base-en-v1.5

    bge-base-en-v1.5

    Efficient English embedding model for semantic search and retrieval

    bge-base-en-v1.5 is an English sentence embedding model from BAAI optimized for dense retrieval tasks, part of the BGE (BAAI General Embedding) family. It is a fine-tuned BERT-based model designed to produce high-quality, semantically meaningful embeddings for tasks like semantic similarity, information retrieval, classification, and clustering. This version (v1.5) improves retrieval performance and stabilizes similarity score distribution without requiring instruction-based prompts. With 768 embedding dimensions and a maximum sequence length of 512 tokens, it achieves strong performance across multiple MTEB benchmarks, nearly matching larger models while maintaining efficiency. It supports use via SentenceTransformers, Hugging Face Transformers, FlagEmbedding, and ONNX for various deployment scenarios. Typical usage includes normalizing output embeddings and calculating cosine similarity via dot product for ranking.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    bge-large-en-v1.5

    bge-large-en-v1.5

    BGE-Large v1.5: High-accuracy English embedding model for retrieval

    BAAI/bge-large-en-v1.5 is a powerful English sentence embedding model designed by the Beijing Academy of Artificial Intelligence to enhance retrieval-augmented language model systems. It uses a BERT-based architecture fine-tuned to produce high-quality dense vector representations optimized for sentence similarity, search, and retrieval. This model is part of the BGE (BAAI General Embedding) family and delivers improved similarity distribution and state-of-the-art results on the MTEB benchmark. It is recommended for use in document retrieval tasks, semantic search, and passage reranking, particularly when paired with a reranker like BGE-Reranker. The model supports inference through multiple frameworks, including FlagEmbedding, Sentence-Transformers, LangChain, and Hugging Face Transformers. It accepts English text as input and returns normalized 1024-dimensional embeddings suitable for cosine similarity comparisons.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    bge-small-en-v1.5

    bge-small-en-v1.5

    Compact English sentence embedding model for semantic search tasks

    BAAI/bge-small-en-v1.5 is a lightweight English sentence embedding model developed by the Beijing Academy of Artificial Intelligence (BAAI) as part of the BGE (BAAI General Embedding) series. Designed for dense retrieval, semantic search, and similarity tasks, it produces 384-dimensional embeddings that can be used to compare and rank sentences or passages. This version (v1.5) improves similarity distribution, enhancing performance without the need for special query instructions. The model is optimized for speed and efficiency, making it suitable for resource-constrained environments. It is compatible with popular libraries such as FlagEmbedding, Sentence-Transformers, and Hugging Face Transformers. The model achieves competitive results on the MTEB benchmark, especially in retrieval and classification tasks. With only 33.4M parameters, it provides a strong balance of accuracy and performance for English-only use cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    fairseq-lua

    fairseq-lua

    Facebook AI Research Sequence-to-Sequence Toolkit

    fairseq-lua is the original Lua/Torch7 version of Facebook AI Research’s sequence modeling toolkit, designed for neural machine translation (NMT) and sequence generation. It introduced early attention-based architectures and training pipelines that later evolved into the modern PyTorch-based fairseq. The framework implements sequence-to-sequence models with attention, beam search decoding, and distributed training, providing a research platform for exploring translation, summarization, and language modeling. Its modular design made it easy to prototype new architectures by modifying encoders, decoders, or attention mechanisms. Although now deprecated in favor of the PyTorch rewrite, fairseq-lua played a key role in advancing large-scale NMT systems, such as early versions of Facebook’s production translation models. It remains an important historical reference for neural sequence learning frameworks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    fairseq2 is a modern, modular sequence modeling framework developed by Meta AI Research as a complete redesign of the original fairseq library. Built from the ground up for scalability, composability, and research flexibility, fairseq2 supports a broad range of language, speech, and multimodal content generation tasks, including instruction fine-tuning, reinforcement learning from human feedback (RLHF), and large-scale multilingual modeling. Unlike the original fairseq—which evolved into a large, monolithic codebase—fairseq2 introduces a clean, plugin-oriented architecture designed for long-term maintainability and rapid experimentation. It supports multi-GPU and multi-node distributed training using DDP, FSDP, and tensor parallelism, capable of scaling up to 70B+ parameter models. The framework integrates seamlessly with PyTorch 2.x features such as torch.compile, Fully Sharded Data Parallel (FSDP), and modern configuration management.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    fashion-clip

    fashion-clip

    CLIP model fine-tuned for zero-shot fashion product classification

    FashionCLIP is a domain-adapted CLIP model fine-tuned specifically for the fashion industry, enabling zero-shot classification and retrieval of fashion products. Developed by Patrick John Chia and collaborators, it builds on the CLIP ViT-B/32 architecture and was trained on over 800K image-text pairs from the Farfetch dataset. The model learns to align product images and descriptive text using contrastive learning, enabling it to perform well across various fashion-related tasks without additional supervision. FashionCLIP 2.0, the latest version, uses the laion/CLIP-ViT-B-32-laion2B-s34B-b79K checkpoint for improved accuracy, achieving better F1 scores across multiple benchmarks compared to earlier versions. It supports multilingual fashion queries and works best with clean, product-style images against white backgrounds. The model can be used for product search, recommendation systems, or visual tagging in e-commerce platforms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    gpt-oss-120b

    gpt-oss-120b

    OpenAI’s open-weight 120B model optimized for reasoning and tooling

    GPT-OSS-120B is a powerful open-weight language model by OpenAI, optimized for high-level reasoning, tool use, and agentic tasks. With 117B total parameters and 5.1B active parameters, it’s designed to fit on a single H100 GPU using native MXFP4 quantization. The model supports fine-tuning, chain-of-thought reasoning, and structured outputs, making it ideal for complex workflows. It operates in OpenAI’s Harmony response format and can be deployed via Transformers, vLLM, Ollama, LM Studio, and PyTorch. Developers can control the reasoning level (low, medium, high) to balance speed and depth depending on the task. Released under the Apache 2.0 license, it enables both commercial and research applications. The model supports function calling, web browsing, and code execution, streamlining intelligent agent development.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    gpt-oss-20b

    gpt-oss-20b

    OpenAI’s compact 20B open model for fast, agentic, and local use

    GPT-OSS-20B is OpenAI’s smaller, open-weight language model optimized for low-latency, agentic tasks, and local deployment. With 21B total parameters and 3.6B active parameters (MoE), it fits within 16GB of memory thanks to native MXFP4 quantization. Designed for high-performance reasoning, it supports Harmony response format, function calling, web browsing, and code execution. Like its larger sibling (gpt-oss-120b), it offers adjustable reasoning depth and full chain-of-thought visibility for better interpretability. It’s released under a permissive Apache 2.0 license, allowing unrestricted commercial and research use. GPT-OSS-20B is compatible with Transformers, vLLM, Ollama, PyTorch, and other tools. It is ideal for developers building lightweight AI agents or experimenting with fine-tuning on consumer-grade hardware.
    Downloads: 0 This Week
    Last Update:
    See Project