[go: up one dir, main page]

AI Models for ChromeOS

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    GLM-4-32B-0414

    GLM-4-32B-0414

    Open Multilingual Multimodal Chat LMs

    GLM-4-32B-0414 is a powerful open-source large language model featuring 32 billion parameters, designed to deliver performance comparable to leading models like OpenAI’s GPT series. It supports multilingual and multimodal chat capabilities with an extensive 32K token context length, making it ideal for dialogue, reasoning, and complex task completion. The model is pre-trained on 15 trillion tokens of high-quality data, including substantial synthetic reasoning datasets, and further enhanced with reinforcement learning and human preference alignment for improved instruction-following and function calling. Variants like GLM-Z1-32B-0414 offer deep reasoning and advanced mathematical problem-solving, while GLM-Z1-Rumination-32B-0414 specializes in long-form, complex research-style writing using scaled reinforcement learning and external search tools. Despite its large capacity, the model supports user-friendly local deployment and efficient fine-tuning with available scripts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    GLM-4.5-Air

    GLM-4.5-Air

    Compact hybrid reasoning language model for intelligent responses

    GLM-4.5-Air is a multilingual large language model with 106 billion total parameters and 12 billion active parameters, designed for conversational AI and intelligent agents. It is part of the GLM-4.5 family developed by Zhipu AI, offering hybrid reasoning capabilities via two modes: a thinking mode for complex reasoning and tool use, and a non-thinking mode for immediate responses. The model is optimized for efficiency and deployment, delivering strong results across 12 industry benchmarks, with a composite score of 59.8. GLM-4.5-Air supports both English and Chinese, and is suitable for tasks involving text generation, coding, reasoning, and tool calling. Open-sourced under the MIT license, it is commercially usable and integrates with transformers, vLLM, and SGLang inference frameworks. It includes FP8 variants for faster inference and reduced memory requirements. Despite its smaller size compared to full GLM-4.5, GLM-4.5-Air maintains high performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation so teams can benchmark and iterate rapidly. The code is organized to be legible and hackable, exposing attention blocks, positional encodings, and head configurations. With standard PyTorch abstractions, it integrates easily into existing training loops, loggers, and evaluation harnesses.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    Granite 3.0 Language Models

    Granite 3.0 Language Models

    New set of lightweight state-of-the-art, open foundation models

    This repository introduces Granite 3.0 language models as lightweight, state-of-the-art open foundation models built to natively support multilinguality, coding, reasoning, and tool usage. A central goal is efficient deployment, including the potential to run on constrained compute resources while remaining useful for a broad span of enterprise tasks. The repo positions the models for both research and commercial use under an Apache-2.0 license, signaling permissive adoption paths. Documentation highlights the capability mix (reasoning, tool use, code) and points to model artifacts and guidance for evaluation. Activity on the project shows an evolving codebase with open pull requests and standard GitHub project structure for issues and security visibility. In practice, this is a hub for acquiring Granite 3.0 variants and understanding how to integrate them into applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Granite Code Models

    Granite Code Models

    A Family of Open Foundation Models for Code Intelligence

    Granite Code Models are IBM’s open-source, decoder-only models tailored for code tasks such as fixing bugs, explaining and documenting code, and modernizing codebases. Trained on code from 116 programming languages, the family targets strong performance across diverse benchmarks while remaining accessible to the community. The repository introduces the model lineup, intended uses, and evaluation highlights, and it complements IBM’s broader Granite initiative spanning multiple modalities. IBM’s research blog details the motivation for opening these models and points developers to downloads, papers, and hosting options. Together, the materials position Granite Code as enterprise-friendly, permissively licensed models for practical software engineering assistance. They slot into the larger Granite ecosystem that includes language and time-series models, community cookbooks, and production guidance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Grok-2.5

    Grok-2.5

    Large-scale xAI model for local inference with SGLang, Grok-2.5

    Grok-2.5 is a large-scale AI model developed and released by xAI in 2024, made available through Hugging Face for research and experimentation. The model is distributed as raw weights that require specialized infrastructure to run, rather than being hosted by inference providers. To use it, users must download over 500 GB of files and set them up locally with the SGLang inference engine. Grok-2.5 supports advanced inference with multi-GPU configurations, requiring at least 8 GPUs with more than 40 GB of memory each for optimal performance. It integrates with the SGLang framework to enable serving, testing, and chat-style interactions. The model comes with a post-training architecture and requires the correct chat template to function properly. It is released under the Grok 2 Community License Agreement, encouraging community experimentation and responsible use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Hermes 4

    Hermes 4

    Hermes 4 FP8: hybrid reasoning Llama-3.1-405B model by Nous Research

    Hermes 4 405B FP8 is a cutting-edge large language model developed by Nous Research, built on Llama-3.1-405B and optimized for frontier reasoning and alignment. It introduces a hybrid reasoning mode with explicit <think> segments, enabling the model to deliberate deeply when needed and switch to faster responses when desired. Post-training improvements include a vastly expanded corpus with ~60B tokens, boosting performance across math, code, STEM, logic, creativity, and structured outputs. The model is designed for schema adherence, producing valid JSON and repairing malformed outputs, making it highly suitable for tool use and function calling. Hermes 4 is engineered for superior steerability with reduced refusal rates, aligning responses to user values while preserving assistant quality. It achieves state-of-the-art results on RefusalBench, outperforming both closed and open models in balancing helpfulness with adaptability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Hunyuan-A13B-Instruct

    Hunyuan-A13B-Instruct

    Efficient 13B MoE language model with long context and reasoning modes

    Hunyuan-A13B-Instruct is a powerful instruction-tuned large language model developed by Tencent using a fine-grained Mixture-of-Experts (MoE) architecture. While the total model includes 80 billion parameters, only 13 billion are active per forward pass, making it highly efficient while maintaining strong performance across benchmarks. It supports up to 256K context tokens, advanced reasoning (CoT) abilities, and agent-based workflows with tool parsing. The model offers both fast and slow thinking modes, letting users trade off speed for deeper reasoning. It excels in mathematics, science, coding, and multi-turn conversation tasks, rivaling or outperforming larger models in several areas. Deployment is supported via TensorRT-LLM, vLLM, and SGLang, with Docker images and integration guides provided. Open-source under a custom license, it's ideal for researchers and developers seeking scalable, high-context AI capabilities with optimized inference.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The top-rated AI recruiting platform for faster, smarter hiring. Icon
    The top-rated AI recruiting platform for faster, smarter hiring.

    Humanly is an AI recruiting platform that automates candidate conversations, screening, and scheduling.

    Humanly is an AI-first recruiting platform that helps talent teams hire in days, not months—without adding headcount. Our intuitive CRM pairs with powerful agentic AI to engage and screen every candidate instantly, surfacing top talent fast. Built on insights from over 4 million candidate interactions, Humanly delivers speed, structure, and consistency at scale—engaging 100% of interested candidates and driving pipeline growth through targeted outreach and smart re-engagement. We integrate seamlessly with all major ATSs to reduce manual work, improve data flow, and enhance recruiter efficiency and candidate experience. Independent audits ensure our AI remains fair and bias-free, so you can hire confidently.
    Learn More
  • 10
    Hunyuan-MT-7B

    Hunyuan-MT-7B

    Tencent’s 36-language state-of-the-art translation model

    Hunyuan-MT-7B is a large-scale multilingual translation model developed by Tencent, designed to deliver state-of-the-art translation quality across 36 languages, including several Chinese ethnic minority languages. It forms part of the Hunyuan Translation Model family, alongside Hunyuan-MT-Chimera, which ensembles outputs for even higher accuracy. Trained with a comprehensive framework spanning pretraining, cross-lingual pretraining, supervised fine-tuning, enhancement, and ensemble refinement, the model achieves competitive results against systems of similar or larger scale. At WMT25, Hunyuan-MT secured first place in 30 of the 31 translation categories it entered, highlighting its reliability in real-world multilingual use. The model offers flexible deployment options with variants such as FP8 quantization and ensemble configurations. It supports natural prompts for both Chinese translations, making it easy to integrate into translation workflows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    HunyuanCustom

    HunyuanCustom

    Multimodal-Driven Architecture for Customized Video Generation

    HunyuanCustom is a multimodal video customization framework by Tencent Hunyuan, aimed at generating customized videos featuring particular subjects (people, characters) under flexible conditions, while maintaining subject/identity consistency. It supports conditioning via image, audio, video, and text, and can perform subject replacement in videos, generate avatars speaking given audio, or combine multiple subject images. The architecture builds on HunyuanVideo, with added modules for identity reinforcement and modality-specific condition injection. Text-image fusion module based on LLaVA for improved multimodal understanding. Applicable to single- and multi-subject scenarios, video editing/replacement, singing avatars etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    HunyuanDiT

    HunyuanDiT

    Diffusion Transformer with Fine-Grained Chinese Understanding

    HunyuanDiT is a high-capability text-to-image diffusion transformer with bilingual (Chinese/English) understanding and multi-turn dialogue capability. It trains a diffusion model in latent space using a transformer backbone and integrates a Multimodal Large Language Model (MLLM) to refine captions and support conversational image generation. It supports adapters like ControlNet, IP-Adapter, LoRA, and can run under constrained VRAM via distillation versions. LoRA, ControlNet (pose, depth, canny), IP-adapter to extend control over generation. Integration with Gradio for web demos and diffusers / command-line compatibility. Supports multi-turn T2I (text-to-image) interactions so users can iteratively refine their images via dialogue.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    HunyuanVideo-I2V

    HunyuanVideo-I2V

    A Customizable Image-to-Video Model based on HunyuanVideo

    HunyuanVideo-I2V is a customizable image-to-video generation framework from Tencent Hunyuan, built on their HunyuanVideo foundation. It extends video generation so that given a static reference image plus an optional prompt, it generates a video sequence that preserves the reference image’s identity (especially in the first frame) and allows stylized effects via LoRA adapters. The repository includes pretrained weights, inference and sampling scripts, training code for LoRA effects, and support for parallel inference via xDiT. Resolution, video length, stability mode, flow shift, seed, CPU offload etc. Parallel inference support using xDiT for multi-GPU speedups. LoRA training / fine-tuning support to add special effects or customize generation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    InfoGAN

    InfoGAN

    Code for reproducing key results in the paper

    The InfoGAN repository contains the original implementation used to reproduce the results in the paper “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets”. InfoGAN is a variant of the GAN (Generative Adversarial Network) architecture that aims to learn disentangled and interpretable latent representations by maximizing the mutual information between a subset of the latent codes and the generated outputs. That extra incentive encourages the generator to structure its latent space in a way where certain latent variables control meaningful, distinct factors (e.g. rotation, width, stroke thickness) in the output images. The repository includes code for experiments (e.g. on MNIST), launcher scripts, and some tests. It depends on a development version of TensorFlow (the code expects features not in older stable releases), and also uses other libraries like prettytensor and progressbar.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Jan-v1-edge

    Jan-v1-edge

    Jan-v1-edge: efficient 1.7B reasoning model optimized for edge devices

    Jan-v1-edge is a lightweight agentic language model developed by JanHQ, designed for fast and reliable on-device execution. It is the second release in the Jan Family and was distilled from the larger Jan-v1 model, retaining strong reasoning and problem-solving capabilities while reducing its computational footprint. The model was refined through a two-stage post-training process: Supervised Fine-Tuning (SFT) to transfer knowledge from Jan-v1, followed by Reinforcement Learning with Verifiable Rewards (RLVR) to optimize reasoning, tool use, and correctness. With just 1.7B parameters, Jan-v1-edge achieves 83% accuracy on SimpleQA tasks, approaching the performance of larger models like Jan-nano-128k. Benchmark comparisons show it remains competitive or superior in areas such as EQBench and recency QA, though with slight trade-offs in instruction following and creative writing compared to similar-sized Qwen models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Kimi K2

    Kimi K2

    Kimi K2: 1T-param MoE model for advanced coding and agentic reasoning

    Kimi K2 (K2-Instruct-0905) is a state-of-the-art Mixture-of-Experts (MoE) language model developed by Moonshot AI, designed for high-performance reasoning, coding assistance, and agentic task orchestration. It features 1 trillion total parameters with 32 billion activated per token, enabling strong efficiency while maintaining very high capability. Kimi K2 demonstrates major gains in real-world coding and tool-use benchmarks, especially in SWE-Bench, Terminal-Bench, and multilingual programming tasks. Its 256K token context window allows it to handle extremely long workflows, multi-file repositories, conversations, and documents without losing coherence. The model is optimized for agentic intelligence, meaning it can autonomously decide when to call functions, perform actions, or use external tools during problem solving. Kimi K2 also provides enhanced frontend and UI coding support, generating practical, usable code rather than only algorithmic solutions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically from large image–text or weakly supervised corpora. It includes utilities to build concept vocabularies, map supervision signals to those vocabularies, and measure zero-shot or few-shot generalization. Probing tools help diagnose what the model knows—e.g., attribute recognition, relation understanding, or compositionality—so you can iterate on data and objectives. The design is modular, making it straightforward to swap backbones, change objectives, or integrate retrieval components.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Llama-3.2-1B

    Llama-3.2-1B

    Llama 3.2–1B: Multilingual, instruction-tuned model for mobile AI

    meta-llama/Llama-3.2-1B is a lightweight, instruction-tuned generative language model developed by Meta, optimized for multilingual dialogue, summarization, and retrieval tasks. With 1.23 billion parameters, it offers strong performance in constrained environments like mobile devices, without sacrificing versatility or multilingual support. It is part of the Llama 3.2 family, trained on up to 9 trillion tokens and aligned using supervised fine-tuning, preference optimization, and safety tuning. The model supports eight officially listed languages (including Spanish, German, Hindi, and Thai) but can be adapted to more. Llama 3.2-1B outperforms other open models in several benchmarks relative to its size and offers quantized versions for efficiency. It uses a refined transformer architecture with Grouped-Query Attention (GQA) and supports long context windows of up to 128k tokens.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Llama-3.2-1B-Instruct

    Llama-3.2-1B-Instruct

    Instruction-tuned 1.2B LLM for multilingual text generation by Meta

    Llama-3.2-1B-Instruct is Meta’s multilingual, instruction-tuned large language model with 1.24 billion parameters, optimized for dialogue, summarization, and retrieval tasks. It builds upon the Llama 3.1 architecture and incorporates fine-tuning techniques like SFT, DPO, and quantization-aware training for improved alignment, efficiency, and safety. The model supports eight primary languages (including English, Spanish, Hindi, and Thai) and was trained on a curated mix of publicly available online data, with a December 2023 knowledge cutoff. Llama-3.2-1B is lightweight enough for deployment on constrained devices like smartphones, using formats like SpinQuant and QLoRA to reduce model size and latency. Despite its small size, it performs competitively across benchmarks such as MMLU, ARC, and TLDR summarization. The model is distributed under the Llama 3.2 Community License, requiring attribution and adherence to Meta’s Acceptable Use Policy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the full image—making pretraining computationally efficient. After pretraining, the encoder serves as a powerful backbone for downstream tasks like image classification, segmentation, and detection, achieving top performance with minimal fine-tuning. The repository provides pretrained models, fine-tuning scripts, evaluation protocols, and visualization tools for reconstruction quality and learned features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized evaluation scripts and dictionaries. By mapping languages into a common vector space, MUSE makes it straightforward to build cross-lingual applications where resources are scarce for some languages. The training and evaluation pipeline is lightweight and fast, so experimenting with different languages or initialization strategies is easy. Beyond dictionary induction, the learned embeddings are often used as building blocks for downstream tasks like classification, retrieval, or machine translation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Map-Anything

    Map-Anything

    MapAnything: Universal Feed-Forward Metric 3D Reconstruction

    Map-Anything is a universal, feed-forward transformer for metric 3D reconstruction that predicts a scene’s geometry and camera parameters directly from visual inputs. Instead of stitching together many task-specific models, it uses a single architecture that supports a wide range of 3D tasks—multi-image structure-from-motion, multi-view stereo, monocular metric depth, registration, depth completion, and more. The model flexibly accepts different input combinations (images, intrinsics, poses, sparse or dense depth) and produces a rich set of outputs including per-pixel 3D points, camera intrinsics, camera poses, ray directions, confidence maps, and validity masks. Its inference path is fully feed-forward with optional mixed-precision and memory-efficient modes, making it practical to scale to long image sequences while keeping latency predictable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial support. This leads to accurate masks with sharp boundaries and strong small-object performance while remaining efficient on high-resolution inputs. The project provides extensive configurations and pretrained models across popular benchmarks like COCO, ADE20K, and Cityscapes. Built on top of Detectron2, it includes training scripts, inference tools, and visualization utilities that make experimentation straightforward.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Mellum-4b-base

    Mellum-4b-base

    JetBrains’ 4B parameter code model for completions

    Mellum-4b-base is JetBrains’ first open-source large language model designed and optimized for code-related tasks. Built with 4 billion parameters and a LLaMA-style architecture, it was trained on over 4.2 trillion tokens across multiple programming languages, including datasets such as The Stack, StarCoder, and CommitPack. With a context window of 8,192 tokens, it excels at code completion, fill-in-the-middle tasks, and intelligent code suggestions for professional developer tools and IDEs. The model is efficient for both cloud inference with vLLM and local deployment using llama.cpp or Ollama, thanks to its bf16 precision and AMP training. While the base model is not fine-tuned for downstream tasks, it is designed to be easily adapted through supervised fine-tuning (SFT) or reinforcement learning (RL). Benchmarks on RepoBench, SAFIM, and HumanEval demonstrate its competitive performance, with specialized fine-tuned versions for Python already showing strong improvements.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation across base and target domains to measure how well the model retains its general knowledge while specializing as needed. It includes utilities to fine-tune vision-language embeddings, compute prompt or adapter updates, and benchmark across transfer and retention metrics. MetaCLIP is especially suited for real-world settings where a model must continuously incorporate new visual categories or domains over time.
    Downloads: 0 This Week
    Last Update:
    See Project