[go: up one dir, main page]

Open Source Natural Language Processing (NLP) Tools

Natural Language Processing (NLP) Tools

View 188 business solutions

Browse free open source Natural Language Processing (NLP) tools and projects below. Use the toggles on the left to filter open source Natural Language Processing (NLP) tools by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • AI-based, Comprehensive Service Management for Businesses and IT Providers Icon
    AI-based, Comprehensive Service Management for Businesses and IT Providers

    Modular solutions for change management, asset management and more

    ChangeGear provides IT staff with the functions required to manage everything from ticketing to incident, change and asset management and more. ChangeGear includes a virtual agent, self-service portals and AI-based features to support analyst and end user productivity.
    Learn More
  • 1
    MeCab is a fast and customizable Japanese morphological analyzer. MeCab is designed for generic purpose and applied to variety of NLP tasks, such as Kana-Kanji conversion. MeCab provides parameter estimation functionalities based on CRFs and HMM
    Leader badge">
    Downloads: 2,238 This Week
    Last Update:
    See Project
  • 2
    Virastyar

    Virastyar

    Virastyar is an spell checker for low-resource languages

    Virastyar is a free and open-source (FOSS) spell checker. It stands upon the shoulders of many free/libre/open-source (FLOSS) libraries developed for processing low-resource languages, especially Persian and RTL languages Publications: Kashefi, O., Nasri, M., & Kanani, K. (2010). Towards Automatic Persian Spell Checking. SCICT. Kashefi, O., Sharifi, M., & Minaie, B. (2013). A novel string distance metric for ranking Persian respelling suggestions. Natural Language Engineering, 19(2), 259-284. Rasooli, M. S., Kahefi, O., & Minaei-Bidgoli, B. (2011). Effect of adaptive spell checking in Persian. In NLP-KE Contributors: Omid Kashefi Azadeh Zamanifar Masoumeh Mashaiekhi Meisam Pourafzal Reza Refaei Mohammad Hedayati Kamiar Kanani Mehrdad Senobari Sina Iravanin Mohammad Sadegh Rasooli Mohsen Hoseinalizadeh Mitra Nasri Alireza Dehlaghi Fatemeh Ahmadi Neda PourMorteza
    Leader badge">
    Downloads: 393 This Week
    Last Update:
    See Project
  • 3
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 4
    Botpress

    Botpress

    Dev tools to reliably understand text and automate conversations

    We make building chatbots much easier for developers. We have put together the boilerplate code and infrastructure you need to get a chatbot up and running. We propose you a complete dev-friendly platform that ships with all the tools you need to build, deploy and manage production-grade chatbots in record time. Built-in Natural Language Processing tasks such as intent recognition, spell checking, entity extraction, and slot tagging (and many others). A visual conversation studio to design multi-turn conversations and workflows. An emulator & a debugger to simulate conversations and debug your chatbot. Support for popular messaging channels like Slack, Telegram, MS Teams, Facebook Messenger, and an embeddable web chat. An SDK and code editor to extend the capabilities. Post-deployment tools like analytics dashboards, human handoff and more.
    Downloads: 17 This Week
    Last Update:
    See Project
  • Yeastar: Business Phone System and Unified Communications Icon
    Yeastar: Business Phone System and Unified Communications

    Go beyond just a PBX with all communications integrated as one.

    User-friendly, optimized, and scalable, the Yeastar P-Series Phone System redefines business connectivity by bringing together calling, meetings, omnichannel messaging, and integrations in one simple platform—removing the limitations of distance, platforms, and systems.
    Learn More
  • 5
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 6
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 7
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers unified experience to explore state-of-the-art models spanning across domains such as CV, NLP, Speech, Multi-Modality, and Scientific-computation. Model contributors of different areas can integrate models into the ModelScope ecosystem through the layered APIs, allowing easy and unified access to their models. Once integrated, model inference, fine-tuning, and evaluations can be done with only a few lines of code.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 8
    Open Interpreter

    Open Interpreter

    A natural language interface for computers

    Open Interpreter is an open-source tool that provides a natural-language interface for interacting with your computer. It lets large language models (LLMs) run code locally (Python, JavaScript, shell, etc.), enabling you to ask your computer to do tasks like data analysis, file manipulation, browsing, etc. in human terms (“chat with your computer”), with safeguards. Runs locally or via configured remote LLM servers/inference backends, giving flexibility to use models you trust or have locally. It prompts you to approve code before executing, and supports both online LLM models and local inference servers. It seeks to combine convenience (like ChatGPT’s code interpreter) with control and flexibility by running on your own machine.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 9
    DOLMA

    DOLMA

    Data and tools for generating and inspecting OLMo pre-training data

    DOLMA (Data Optimization and Learning for Model Alignment) is a framework designed to manage large-scale datasets for training and fine-tuning language models efficiently.
    Downloads: 8 This Week
    Last Update:
    See Project
  • Dominate AI Search Results Icon
    Dominate AI Search Results

    Generative Al is shaping brand discovery. AthenaHQ ensures your brand leads the conversation.

    AthenaHQ is a cutting-edge platform for Generative Engine Optimization (GEO), designed to help brands optimize their visibility and performance across AI-driven search platforms like ChatGPT, Google AI, and more.
    Learn More
  • 10
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 11
    Transformers.jl

    Transformers.jl

    Julia Implementation of Transformer models

    Transformers.jl is a Julia library that implements Transformer models for natural language processing tasks. Inspired by architectures like BERT, GPT, and T5, the library offers a modular and flexible interface for building, training, and using transformer-based deep learning models. It supports training from scratch and fine-tuning pretrained models, and integrates with Flux.jl for automatic differentiation and optimization.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 12
    Underthesea

    Underthesea

    Underthesea - Vietnamese NLP Toolkit

    Underthesea is a Vietnamese NLP toolkit providing various text processing capabilities, including word segmentation, part-of-speech tagging, and named entity recognition.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 13
    Bolt NLP

    Bolt NLP

    Bolt is a deep learning library with high performance

    Bolt is a high-performance deep learning inference framework developed by Huawei Noah's Ark Lab. It is designed to optimize and accelerate the deployment of deep learning models across various hardware platforms. Bolt is a light-weight library for deep learning. Bolt, as a universal deployment tool for all kinds of neural networks, aims to automate the deployment pipeline and achieve extreme acceleration. Bolt has been widely deployed and used in many departments of HUAWEI company, such as 2012 Laboratory, CBG and HUAWEI Product Lines. If you have questions or suggestions, you can submit issue.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 14
    Chatito

    Chatito

    Dataset generation for AI chatbots, NLP tasks

    Chatito is a tool that helps generate datasets for training and validating chatbot models using a simple domain-specific language (DSL).
    Downloads: 7 This Week
    Last Update:
    See Project
  • 15
    Classical Language Toolkit (CLTK)

    Classical Language Toolkit (CLTK)

    The Classical Language Toolkit

    The Classical Language Toolkit (CLTK) is a Python library offering natural language processing support for classical languages, including Latin, Greek, and others.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 16
    Ecco

    Ecco

    Explain, analyze, and visualize NLP language models

    Ecco is an interpretability tool for transformers that helps visualize and analyze how language models generate text, making model behavior more transparent.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 17
    ExtractThinker

    ExtractThinker

    ExtractThinker is a Document Intelligence library for LLMs

    ExtractThinker is a tool designed to facilitate the extraction and analysis of information from various data sources, aiding in data processing and knowledge discovery.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 18
    Obsei

    Obsei

    Obsei is a low code AI powered automation tool

    Obsei is an automated no-code/low-code AI-powered text observation and analysis framework, designed for extracting insights from unstructured text data such as social media, reviews, and logs.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 19
    PaddleNLP

    PaddleNLP

    Easy-to-use and powerful NLP library with Awesome model zoo

    PaddleNLP It is a natural language processing development library for flying paddles, with Easy-to-use text area API, Examples of applications for multiple scenarios, and High-performance distributed training Three major features, aimed at improving the modeling efficiency of the flying oar developer's text field, aiming to improve the developer's development efficiency in the text field, and provide rich examples of NLP applications. Provide rich industry-level pre-task capabilities Taskflow And process-wide text area API: Support for the loading of rich Chinese data sets Dataset API, can flexibly and efficiently complete data pretreatment Data API, Preset 60 + pre-training word vector Embedding API, Providing 100 + pre-training model Transformer API Wait, the efficiency of NLP task modeling can be greatly improved.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 20
    PaperAI

    PaperAI

    Semantic search and workflows for medical/scientific papers

    PaperAI is an open-source framework for searching and analyzing scientific papers, particularly useful for researchers looking to extract insights from large-scale document collections.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 21
    Parsr

    Parsr

    Transforms PDF, Documents and Images into Enriched Structured Data

    Parsr is an open-source document parsing tool that converts PDFs, scanned images, and other structured documents into structured, machine-readable data formats.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 22
    SetFit

    SetFit

    Efficient few-shot learning with Sentence Transformers

    SetFit is an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers. It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 23
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 24
    kener

    kener

    Kener is a Modern Self hosted Status Page, batteries included

    Kener: Open-source Node.js status page tool, designed to make service monitoring and incident handling a breeze. It offers a sleek and user-friendly interface that simplifies tracking service outages and improves how we communicate during incidents. And the best part? Kener integrates seamlessly with GitHub, making incident management a team effort—making it easier for us to track and fix issues together in a collaborative and friendly environment.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 25
    AutoGPTQ

    AutoGPTQ

    An easy-to-use LLMs quantization package with user-friendly apis

    AutoGPTQ is an implementation of GPTQ (Quantized GPT) that optimizes large language models (LLMs) for faster inference by reducing their computational footprint while maintaining accuracy.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next

Open Source Natural Language Processing (NLP) Tools Guide

Open source natural language processing (NLP) tools are software applications designed to help users analyze, interpret, and understand text. They are usually developed as an open source project by a community of developers who collaborate together to develop the application.Open source NLP tools often utilize sophisticated algorithms and techniques such as machine learning, deep learning, and natural language understanding to provide insights into text data. These insights can be used for many purposes such as sentiment analysis, topic classification, automatic summarization, entity extraction, and question answering. In addition to being open source projects, these tools are free from cost which is attractive for researchers and business owners who don't have the budget for expensive commercial NLP software solutions. With their flexibility and affordability in mind many businesses have adopted open source NLP tools for data analysis purposes such as customer service chatbot development or social media monitoring projects. Open source NLP tools can be deployed on-premises or in the cloud making them even more versatile when it comes to using them in production systems.

Features of Open Source Natural Language Processing (NLP) Tools

  • Tokenization: Process of splitting a sentence into its individual words or phrases, known as tokens.
  • Part-Of-Speech Tagging: A process that assigns part-of-speech tags (nouns, verbs, adjectives etc.) to each token in a sentence.
  • Named Entity Recognition: A process for detecting and classifying named entities (people, places, organizations etc.) from unstructured text.
  • Syntactic Parsing: Process of segmenting text into smaller pieces to determine the meaning and structure of a sentence.
  • Semantic Analysis: A process for extracting the underlying meaning behind a set of words by connecting them with relevant context or facts.
  • Sentiment Analysis: Process used to identify subjective opinions expressed in text and classify it as either positive or negative.
  • Summarization & Text Simplification: Refers to techniques used to produce shorter versions of texts while maintaining the key information contained within them.
  • Machine Translation & Language Identification: Natural language processing tools used to detect source language and automatically translate it into another target language.

Different Types of Open Source Natural Language Processing (NLP) Tools

  • GATE (General Architecture for Text Engineering): GATE is an open-source platform for performing NLP tasks such as text mining and information extraction. It provides modular components that can be used to build more complex applications.
  • Stanford CoreNLP: Stanford CoreNLP is a suite of tools for natural language processing of English, Chinese, French, Spanish and other languages. It includes a set of core Java libraries and command line tools which allow developers to create custom NLP pipelines.
  • NLTK (Natural Language ToolKit): NLTK is an open source library used to build Python programs that can analyze natural language. It provides interfaces to more than 50 corpora and lexical resources, along with wrappers for over 50 NLP applications.
  • spaCy: SpaCy is a library for advanced NLP in Python designed specifically for production use on large datasets. It allows developers to quickly create systems that can process large volumes of text accurately and efficiently using its efficient algorithms and Pipelines-based architecture.
  • OpenNLP: OpenNLP is an Apache-licensed open source toolkit developed by the Apache Software Foundation for the processing of human language data like tokenization, segmentation, categorization, parsing etc., written in Java programming language.
  • UIMA (Unstructured Information Management Architecture): UIMA is an open source framework developed by IBM Research specifically designed to enable development of applications which search unstructured content and extract information from it like annotations, relationships etc., through annotators written in Java or C++ programming language.

Open Source Natural Language Processing (NLP) Tools Advantages

  1. Cost: Using open source NLP tools is often free, or much more cost effective than expensive licensed software. This makes it an ideal choice for businesses who have smaller budgets, as well as individuals and researchers.
  2. Efficiency: Open source NLP tools are available immediately, with no need to purchase or wait for a license. This makes them great when you need results quickly.
  3. Flexibility: Open source NLP tools are often very customizable and can be adapted to many different tasks. This provides flexibility in using the tool for a variety of needs.
  4. Portability: Since they are open source, these tools can be used on any operating system without the need to install additional software. They can also easily be shared and distributed among colleagues or students in a class setting with minimal effort.
  5. Security & Privacy: Many open source solutions guarantee that your code is not only secure but private too, meaning that no one else will have access to confidential data or research results from your projects unless you choose to share them publicly.
  6. Community Support & Development: The advantage of having an active community behind their development ensures that these NLP solutions stay up-to-date and keep improving rapidly with the regular updates provided by the community developers addressing bugs and adding new features. Additionally, having so many people contributing allows users of open source tools to get help faster if they face a problem when using the tool set.

What Types of Users Use Open Source Natural Language Processing (NLP) Tools?

  • Researchers: Scientists and academics who use open source NLP tools to study language, its meaning, and its context.
  • Educators: Those who teach students about the basics of natural language processing as a part of their coursework.
  • Data Analysts: Analysts leverage open source NLP tools to extract insights from datasets or text-based sources.
  • Application Developers: Software engineers and application developers who use open source NLP libraries for tasks like creating chatbots or building speech recognition software.
  • Machine Learning Engineers: Professionals who develop machine learning models that utilize natural language processing techniques.
  • Business Analytics Teams: Companies often have analytics teams that apply NLP techniques to their customer data in order to better understand customer behavior and preferences.
  • Webmasters: Webmasters can use open source NLP libraries to automatically generate content or monitor webpages for certain key words or phrases.
  • Journalists & Content Creators: Journalists, bloggers, copywriters, etc., commonly use open source NLP tools to organize notes, generate content outlines and edit drafts more efficiently than before.

How Much Do Open Source Natural Language Processing (NLP) Tools Cost?

Open source natural language processing (NLP) tools are typically free to use. As open source software, they are developed and maintained by a community of volunteers who donate their time and energy to create quality code that can be used by anyone across the world. This means that you don’t have to pay a cent for creating sophisticated NLP models or applications using open source NLP tools.

With an increasing number of open source resources available today, you can find various kinds of data sets, tools and frameworks for building your own classifiers for sentiment analysis, text summarization or even machine translation systems. Some of these resources include popular libraries like Natural Language Toolkit (NLTK), Python-based TensorFlow library, OpenNLP from Apache Software Foundation and SpaCy – an industrial-strength natural language understanding library in Python.

These libraries come with extensive documentation on how to use them as well as detailed instructions on how to implement particular tasks — such as text classification or information extraction — leveraging the power of machine learning algorithms. With only basic programming knowledge required, one can create complex tools or extend existing ones with just a few lines of code. Thus there is no need for costly licenses related to closed-source software when working with free and open source NLP tools.

What Software Do Open Source Natural Language Processing (NLP) Tools Integrate With?

Open source natural language processing (NLP) tools can be integrated with a variety of software, including chatbot development platforms, analytic and business intelligence platforms, enterprise search solutions, automation and workflow management systems, customer support software, voice recognition technologies, and more. Many of these types of software provide APIs or other integration services that allow developers to quickly connect their NLP tools to other applications. By connecting open source NLP tools to other applications through these interfaces, users can leverage the power of NLP for use cases such as automatically analyzing customer data for sentiment analysis or creating virtual agents using natural language commands.

What Are the Trends Relating to Open Source Natural Language Processing (NLP) Tools?

  1. Open source NLP tools are becoming increasingly popular due to their flexibility and affordability.
  2. Developers have access to a wide range of software libraries, from which they can pick the best fit for their projects.
  3. Deep learning algorithms have been incorporated into many open source NLP tools, resulting in more accurate language processing.
  4. Open source frameworks such as spaCy, NLTK, and Gensim offer developers the opportunity to customize models and hyperparameters.
  5. Open source NLP tools make it easier for developers to integrate pre-trained models into their applications.
  6. These tools are being used more frequently in various applications such as chatbot development, text summarization, sentiment analysis, natural language understanding, etc.
  7. Many open source libraries also provide support for multiple languages, making them accessible to a wider audience.
  8. There has been increased focus on open source efforts in the industry, with companies investing resources in developing new NLP tools and services.
  9. Open source NLP tools are becoming more user-friendly and accessible over time, allowing more developers to benefit from them.

How Users Can Get Started With Open Source Natural Language Processing (NLP) Tools

Getting started with using open source Natural Language Processing (NLP) projects is easier than ever now that there are a wide range of popular and powerful projects available.

The first step in getting up to speed on open source NLP tools is to familiarize yourself with the most popular frameworks, libraries, and packages available. There are dozens of options out there, including spaCy, NLTK, OpenNLP, NLU-Evaluation Framework (NEF), Stanford CoreNLP, Gensim, AllenNLP, and HuggingFace Transformers. Different projects focus on different tasks (e.g., tokenization), so you should consider which project is best suited for your particular needs. Once you’ve chosen a project or framework that fits your requirements best it's time to get started.

Fortunately tutorials for many of these packages are commonly updated as new versions come out or bugs have been fixed. A great place to start if you're new to using open source NLP tools is training courses such as Natural Language Processing with Python from Coursera or Udacity's Intro to Natural Language Processing course. These courses will help you understand the basics of NLP concepts and algorithms as well as provide an overview of the various tools and packages available for use in developing solutions for natural language processing tasks.

Once you've completed any necessary training online or elsewhere it's time to dig deeper into each package and library that interests you most. Each project often has its own official website containing extensive documentation explaining not only how set up the software but also how certain features work exactly under different settings etc.. Github repos can often provide more insights into an algorithm’s capabilities by providing examples written by users who may have already solved a problem similar to yours before. Lastly don't forget about local user groups where passionate people eager to help newcomers meet in person share their experiences while demystifying some technical hurdles along the way.