US20020087934A1 - Method and apparatus for preprocessing for peripheral erroneous data - Google Patents
Method and apparatus for preprocessing for peripheral erroneous data Download PDFInfo
- Publication number
- US20020087934A1 US20020087934A1 US09/248,787 US24878799A US2002087934A1 US 20020087934 A1 US20020087934 A1 US 20020087934A1 US 24878799 A US24878799 A US 24878799A US 2002087934 A1 US2002087934 A1 US 2002087934A1
- Authority
- US
- United States
- Prior art keywords
- class
- computer
- create
- input signal
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
- H04N19/89—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder
- H04N19/895—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder in combination with error concealment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/112—Selection of coding mode or of prediction mode according to a given display mode, e.g. for interlaced or progressive display mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/137—Motion inside a coding unit, e.g. average field, frame or block difference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/80—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
Definitions
- This invention relates generally to the processing of image, sound or other correlated signals, and more particularly, to a method, apparatus, and article of manufacture for restoring a deteriorated signal to an undeteriorated signal.
- FIG. 1A shows a conventional error recovery block diagram.
- FIG. 1B uses neighboring data, which are shown in FIG. 1B, spatial inclinations of the target data are detected.
- the inclinations regarding four directions are evaluated according to the formulae which are shown in FIG. 1C.
- An interpolation filter is chosen where the inclination value, E i , is the smallest among four values.
- a motion factor is also evaluated for error recovery.
- a selected spatial filter is used for error recovery.
- the previous frame data at the same location as the target data are used for error recovery. This evaluation is performed in the evaluation block of FIG. 1A.
- FIGS. 1 A- 1 C The conventional error recovery process shown in FIGS. 1 A- 1 C may cause many serious degradations on changing data, especially on object edges. Actual signal distribution typically varies widely, so these problems are likely to occur. Therefore, there is a need for a way to restore a deteriorated signal to an undeteriorated signal which minimizes degradations on changing data.
- the present invention provides a method, apparatus, and article of manufacture for restoring a deteriorated signal to an undeteriorated signal.
- a deteriorated signal consists of a plurality of deteriorated and undeteriorated data points. For each deteriorated data point, a plurality of class types is created based upon characteristics of the area containing the deteriorated data point. The data point is classified with respect to one of the plurality of class types and assigned a corresponding input signal class. The undeteriorated signal is generated by adaptive filtering of the input signal in accordance with the input signal classification results. More than one classification method may optionally be used to create the plurality of class types.
- Created classes may include a motion class, an error class, a spatial class or a spatial activity class.
- An adaptive class tap structure may optionally be used to create the plurality of class types.
- An adaptive filter tap structure may optionally be used base on the corresponding plurality of class types.
- Filter tap expansion may optionally be used to reduce the number of filter coefficients.
- the deteriorated input signal may optionally be modified by preprocessing peripheral erroneous data.
- a spatial class may optionally be modified according to spatial symmetry.
- FIGS. 1 A- 1 C show a conventional error recovery method, filter tap, and correspondence between inclination value and interpolation filter
- FIGS. 2 A- 2 D show a classified adaptive error recovery method and class compatible with an embodiment of the present invention
- FIG. 3 shows a motion class tap compatible with an embodiment of the present invention
- FIG. 4 shows an error class tap compatible with an embodiment of the present invention
- FIG. 5 shows an adaptive spatial class tap compatible with an embodiment of the present invention
- FIG. 6 shows an adaptive spatial class tap (error class 0) compatible with an embodiment of the present invention
- FIG. 7 shows an adaptive spatial class tap (error class 1) compatible with an embodiment of the present invention
- FIG. 8 shows an adaptive spatial class tap (error class 2) compatible with an embodiment of the present invention
- FIG. 9 shows an adaptive spatial class tap (error class 3) compatible with an embodiment of the present invention
- FIG. 10 shows an adaptive filter tap compatible with an embodiment of the present invention
- FIG. 11 shows a motion class adaptive filter tap compatible with an embodiment of the present invention
- FIG. 12 shows a motion class adaptive filter tap (error class 0) compatible with an embodiment of the present invention
- FIG. 13 shows a motion class adaptive filter tap (error class 1) compatible with an embodiment of the present invention
- FIG. 14 shows a motion class adaptive filter tap (error class 2) compatible with an embodiment of the present invention
- FIG. 15 shows a motion class adaptive filter tap (error class 3) compatible with an embodiment of the present invention
- FIG. 16 shows a preprocessing algorithm compatible with an embodiment of the present invention
- FIG. 17 shows a motion tap and stationary tap preprocessing algorithm compatible with an embodiment of the present invention
- FIG. 18 shows a system block diagram compatible with an embodiment of the present invention
- FIG. 19 shows coefficient memory contents compatible with an embodiment of the present invention
- FIG. 20 shows an ADRC class reduction based on a 4-tap 1-bit ADRC compatible with an embodiment of the present invention.
- FIG. 21 shows an example of audio signal adaptive classification compatible with an embodiment of the present invention.
- the present invention provides a method, apparatus, and article of manufacture for restoring a deteriorated signal to an undeteriorated signal using classified adaptive error recovery.
- Target data is the particular data of the deteriorated signal whose value is to be determined or estimated.
- Classified adaptive error recovery is the technology which utilizes classified adaptive filter processing. A proper classification with respect to the deteriorated input signal is performed according to the input signal characteristics. An adaptive filter is prepared for each class prior to error recovery processing.
- More than one classification method may optionally be used to generate the plurality of classes.
- Generated classes may include a motion class, an error class, a spatial activity class or a spatial class.
- An adaptive class tap structure may optionally be used to generate the plurality of classes.
- An adaptive filter tap structure may optionally be used according to the class which is detected in each deteriorated input signal.
- the adaptive filter tap structure may optionally be expanded based upon multiple taps. The number of filter coefficients that must be stored can be reduced by allocating the same coefficient to multiple taps. This process is referred to as filter tap expansion.
- the deteriorated input signal may optionally be modified by preprocessing peripheral erroneous data.
- a spatial class may optionally be eliminated according to a spatial class elimination formula.
- the present invention can be applied to any form of correlated data, including without limitation photographs or other two-dimensional static images, holograms, or other three-dimensional static images, video or other two-dimensional moving images, three-dimensional moving images, a monaural sound stream, or sound separated into a number of spatially related streams, such as stereo.
- the term value in one embodiment, may refer to a component within a set of received or generated data.
- a data point is a position, place, instance, location or range within data.
- an adaptive class tap structure is an adaptive structure for class tap definition used in multiple classification.
- a spatial class, a motion class and an error class may be used to define the structure.
- An adaptive filter tap structure is an adaptive structure for filter tap definition based upon a corresponding class.
- a class may be defined based on one or more characteristics of the target data.
- a class may also be defined based on one or more characteristics of the group containing the target data.
- a class ID is a specific value within the class that is used to describe and differentiate the target data from other data with respect to a particular characteristic.
- a class ID may be represented by a number, a symbol, or a code within a defined range.
- a parameter may be used as a predetermined or variable quantity that is used in evaluating, estimating, or classifying the data.
- the particular motion class ID of a target data can be determined by comparing the level of motion quantity in the block containing the target data against a parameter which can be a pre-determined threshold.
- a multiple class may be used as a collection of specific values or sets of values used to describe at least two different characteristics of the target data.
- a multiple class may be defined to be a combination of at least two different classes.
- a multiple class may be defined to be a combination of an error class, a motion class, and a spatial class such as an ADRC class.
- the multiple class ID can be used as the memory address to locate the proper filter coefficients and other information that are used to determine or estimate the value of the target data.
- a simple concatenation of different class IDs in the multiple class ID is used as the memory address.
- a multiple classification scheme is a way of classifying the target data with respect to more than one characteristic of the target data in order to more accurately determine or estimate the value of the target data.
- An error class is a collection of specific values used to describe the various distribution patterns of erroneous data in the neighborhood of the target data.
- an error class is defined to indicate which adjacent data to the target data is erroneous.
- An error class ID is a specific value within the error class used to describe a particular distribution pattern of erroneous data in the neighborhood of the target data. For example, an error class ID of “0” may be defined to indicate that there is no erroneous data to the left and to the right of the target data; an error class ID of “1” may be defined to indicate that the data to the left of the target data is erroneous, etc.
- a filter is a mathematical process, function or mask for selecting a group of data.
- a motion class is a collection of specific values used to describe the motion characteristic of the target data.
- the motion class is defined based on the different levels of motion of the block containing the target data, for example, no motion in the block, little motion in the block, or large motion in the block.
- a motion class ID is a specific value within the motion class used to indicate a particular level of motion quantity of the target data. For example, motion class ID of “0” may be defined to indicate no motion, motion class ID of “3” may be defined to indicate large motion.
- a spatial class is a collection of specific values used to describe the spatial characteristic of the target data. For example, spatial classification of the data may be determined using Adaptive Dynamic Range Coding (ADRC), Differential Pulse Code Modulation (DPCM), Vector Quantization (VQ), Discrete Cosine Transform (DCT), etc.
- a spatial class ID is a specific value within the spatial class used to describe the spatial pattern of the target data in the group or block containing the target data.
- an ADRC class is a spatial class defined by the Adaptive Dynamic Range Coding method.
- An ADRC class ID is a specific value within the ADRC class used to describe the spatial pattern of the data distribution in the group or block containing the target data.
- a class is a collection of specific values used to describe certain characteristics of the target data.
- a variety of different types of classes exist, for example, a motion class, a spatial class, an error class, a spatial activity class, etc.
- the present invention provides a method and apparatus for adaptive processing that generates data corresponding to a set of one or more data classes. This process is known as “classification”. Classification can be achieved by various attributes of signal distribution. For example, Adaptive Dynamic Range Coding (ADRC) may be used for generation of each class as a spatial class, but it will be recognized by one of ordinary skill in the art that other classes, including a motion class, an error class, and a spatial activity class may be used with the present invention without loss of generality.
- a spatial activity class is a collection of specific values used to describe the spatial activity characteristic of the target data. For example, spatial activity classification of the data may be determined using the dynamic range, the standard deviation, the Laplacian value or the spatial gradient value.
- each filter is represented by a matrix of filter coefficients which are applied to the data.
- the filter coefficients can be generated by a training process, an example of which is described subsequently, that occurs as a preparation process prior to filtering.
- the filter coefficients can be stored in a random access memory (RAM), shown in FIG. 2A at 207 .
- Target input data 201 can be accompanied with error flag data 203 .
- Error flag data can indicate locations within the data that contain erroneous pixels.
- an ADRC class is generated for each input target data in classification block 205 , filter coefficients corresponding to each class ID are output from the coefficient memory block 207 , and filtering is executed with input data 201 and the filter coefficients in the filter block 209 .
- the filtered data may correspond to an error recovered result.
- switching between error recovered data and error free data occurs according to the error flag data 203 .
- FIG. 2B an example is shown where the number of class taps is four.
- 16 class IDs are available as given by [formula 3], shown below.
- ADRC is realized by [formula 2], shown below.
- q i ⁇ ( x i - MIN + 0.5 ) ⁇ 2
- c corresponds to an ADRC class ID
- DR represents the dynamic range of the four data area
- MAX represents the maximum level of the four data
- MIN represents the minimum level of the four data
- q i is the ADRC encoded data, also referred to as a Q code
- Q is the number of quantization bits.
- the ⁇ operator represents a truncation operation.
- This process is one type of spatial classification, but it will be recognized by one of ordinary skill in the art that other examples of spatial classification, including Differential PCM, Vector Quantization and Discrete Cosine Transform may be used with the present invention without loss of generality. Any method may be used if it can classify a target data distribution.
- each adaptive filter has 12 taps.
- Filter coefficients can be generated for each class ID by a training process that occurs prior to the error recovery process.
- training may be achieved according to the following criterion.
- X, W, and Y are, for example, the following matrices: X is the input data matrix defined by [formula 6], W is the coefficient matrix defined by [formula 7], and Y corresponds to the target data matrix defined by [formula 8].
- the coefficient w i can be obtained according to [formula 5], so that estimation errors against target data are minimized.
- FIG. 2D A flow diagram of an embodiment of the present invention is shown in FIG. 2D.
- the flow chart of FIG. 2D shows the basic processing stream for generating an undeteriorated signal from the deteriorated input signal.
- the preprocessing for a peripheral erroneous pixel is performed.
- each classification regarding the deteriorated input signal is executed to generate a class ID.
- Some class taps are selected adaptively according to another class ID. Multiple classification may be executed, such as motion classification, error classification, spatial activity classification and spatial classification.
- the classification scheme can be defined during system design, where the classification scheme, the number of classes, and other specification are decided for the target data.
- the design stage may include, among others, considerations of system performance and hardware complexity.
- multiple classification generates a multiple class ID with a plurality of class IDs which are generated by various classification at step 217 .
- filter taps are adaptively selected according to the multiple class ID which is generated at step 219 .
- the filter tap structure is adaptively expanded according to the multiple class ID which is generated at step 219 .
- the number of filter coefficients that must be stored can be reduced by allocating the same coefficient to multiple taps. This process is referred to as filter tap expansion.
- filter coefficients are selected according to the multiple class ID which is generated at step 219 .
- filtering with respect to the deteriorated input signal is executed to generate an undeteriorated signal. Filter coefficients are selected adaptively according to the multiple class ID which is generated in step 219 .
- a three dimensional ADRC process may be used to realize spatio-temporal classification, because simple waveform classifications such as a two dimensional ADRC process typically cannot structurally achieve separation for general motion pictures in the class of FIG. 2B. If both stationary and motion areas are processed in the same class ID, error recovery quality is degraded because of differences in characteristics of the two areas.
- motion classification in addition to spatial classification, may also be used to provide compact definition of temporal characteristics.
- multiple classification may be added to the classified adaptive error recovery method.
- classes such as a motion class, an error class, a spatial activity class and a spatial class explained above.
- the combination of one or more of these different classification methods can also improve classification quality.
- FIG. 3 shows an example of motion class tap structures.
- the example shows eight taps in neighborhood of the target error data.
- the eight tap accumulated temporal difference can be evaluated according to [formula 9], shown below, and is classified to four kinds of motion classes by thresholding based on [formula 10], shown below.
- th0 is equal to 3
- th1 is equal to 8
- th2 is equal to 24.
- m ⁇ ⁇ c ⁇ ⁇ 0 ⁇ ⁇ ( 0 ⁇ fd ⁇ th0 ) ⁇ 1 ⁇ ⁇ ( th0 ⁇ fd ⁇ th1 ) ⁇ 2 ⁇ ⁇ ( th1 ⁇ fd ⁇ th2 ) ⁇ 3 ⁇ ⁇ ( th2 ⁇ fd ) [ formula ⁇ ⁇ 10 ]
- fd represents an accumulated temporal difference
- x i represents motion class tap data of the current frame
- x′ i represents the previous frame tap data corresponding to the current frame
- mc represents a motion class ID.
- Three thresholds, th0, th1, th2, can be used for this motion classification.
- an error class can be used in conjunction with the classified adaptive error recovery method. This classification is achieved according to the erroneous data distribution pattern in neighborhood of the target data, examples of which are shown in FIG. 4. This example has four error classes: an independent error case, a left error case, a right error case, and a three consecutive error case.
- ADRC classification generates 16 kinds of ADRC class IDs, where motion and error classification generate four kinds of class IDs, respectively.
- the number of class IDs equals 16 ⁇ 4 ⁇ 4, or 256.
- Classification may be realized by representing each signal characteristic. Multiple classification can define a suitable class, the class ID, regarding the erroneous target data by combining different classification characteristics.
- an adaptive class tap structure can be used in conjunction with the classified adaptive error recovery method.
- FIG. 5 shows one example of motion class adaptive spatial class tap structures. Intra-frame taps can be chosen in a stationary or a slow motion area. Intra-field taps are typically used for larger motion areas. Suitable spatial classification is achieved by this adaptive processing.
- FIGS. 6, 7, 8 , 9 Additional examples are shown in FIGS. 6, 7, 8 , 9 .
- Spatial class taps are typically selected according to a motion and an error class.
- the erroneous data distribution is taken into account for the spatial class tap definition.
- the neighboring erroneous data is typically not introduced to the spatial classification. By this definition, only valid data is used and the classification accuracy is improved.
- an adaptive filter tap structure based on a corresponding class can be used in conjunction with the classified adaptive error recovery method.
- FIG. 10 shows one example of an adaptive filter tap structures based on an error class.
- the filter tap structure regarding the target data is typically defined adaptively, preferably avoiding damaged data in neighborhood. Damaged data is not chosen for filtering.
- An adaptive filter tap structure can be also defined according to motion class, an example of which is shown in FIG. 11.
- motion class 0 corresponds to stationary areas, but motion class 3 corresponds to large motion areas.
- Motion classes 1 and 2 correspond to intermediate motion areas.
- intra-frame taps are used as shown in FIG. 11.
- previous frame data at the target data location may be used for error recovery filtering. These areas correspond to motion class 0 and 1.
- each filter typically has an intra-field taps structure, which is also shown in FIG. 11. As shown by the example in FIG. 11, previous frame data is not introduced, and thus weakly correlated data is ignored. Filtering quality is typically improved by intra-field taps in such cases.
- FIG. 12 shows an example of motion and error class adaptive filter tap structures.
- FIGS. 10 and 11 represent error and motion class adaptive filter taps, respectively.
- the example shown in FIG. 12 illustrates both adaptive structures with error class0, which is the independent error case.
- Upper adaptive characteristics are also shown in this example.
- FIG. 13 corresponds to error class 1
- FIG. 14 corresponds to error class 2
- FIG. 15 corresponds to error class 3.
- filter tap expansion by allocating the same coefficient to plural taps can be used in conjunction with the classified adaptive error recovery method.
- Filter tap expansion is also shown by the structures in FIGS. 12 - 15 .
- the filter tap structure has four of the same coefficient taps with motion class 3 in FIG. 12. According to the evaluation results, some tap coefficients can be replaced with the same coefficient.
- the example shown in FIG. 12 has four W3 coefficients that are allocated at horizontally and vertically symmetric locations. By this expansion, 14 coefficients can cover 18 tap areas.
- This reduction method can typically reduce the need for coefficient memory and filtering hardware such as adders and multipliers.
- the expansion tap definition may be achieved by evaluation of coefficient distribution and visual results.
- preprocessing for peripheral erroneous data can be used in conjunction with the classified adaptive error recovery method.
- suitable data is necessary at peripheral error locations of filter taps.
- FIG. 16 One example of this preprocessing is shown by the flow diagram of FIG. 16. If at steps 1601 , 1605 , or 1609 there is erroneous data at a peripheral location of the target data, at steps 1603 , 1607 , 1611 the erroneous data is replaced with horizontal processed data in the case of no horizontal errors. If at steps 1613 , 1617 , or 1621 there are three consecutive horizontal errors, at steps 1615 , 1619 , or 1623 vertical processing is applied for generating preprocessed data. In all erroneous cases around the intra-frame data of this example, previous frame data is introduced for error processing, at step 1625 .
- FIG. 17 shows another preprocessing example that uses a motion adaptive process for preprocessing.
- motion quantity is detected at the motion detection step 1701 .
- an averaged motion quantity is calculated by averaging summed motion quantity with the number of error free data at the next step.
- Motion or stationary taps are chosen at step 1703 according to a threshold value of the result of averaged motion quantity.
- processing steps 1705 through 1729 are performed in a manner similar to steps 1601 through 1625 of FIG. 16.
- the preprocessed data is generated according to these prioritized processes, and is introduced for error recovery filtering.
- spatial class reduction can be used in conjunction with the classified adaptive error recovery.
- an ADRC class can be used for the spatial classification, given by [formula 3].
- [formula 11] corresponds to a 1's complement operation in binary data of the ADRC code. This is related to the symmetric characteristics of each signal waveform. Because ADRC classification is a normalization of the target signal waveform, two waveforms which have the relation of 1's complement in each ADRC code can be classified in the same class ID. ADRC class IDs can typically be halved by this reduction process. An ADRC class reduction based on a 4-tap 1-bit ADRC is shown in FIG. 20. In this example, applying [formula 11] gives eight ADRC class pairs. Each pair contains spatial symmetric patterns, and therefore the number of ADRC class IDs can be reduced by half by taking advantage of these symmetric patterns. The spatial class reduction technique can also be applied to other spatial classification techniques, including but not limited to DPCM and Block Truncation Coding (BTC).
- BTC Block Truncation Coding
- FIG. 18 An overall system structure for one embodiment of the present invention, including all the processes described above, is shown in FIG. 18.
- Input data 1801 and corresponding error flags 1803 are input to the system. Examining the error flags 1803 , the input data 1801 is preprocessed at 1805 .
- ADRC classification is performed at 1807
- motion classification is performed at 1809
- error classification is performed at 1811 .
- ADRC class taps are chosen adaptively according to the error and motion class, such as shown in FIGS. 6, 7, 8 , 9 .
- Filter tap data are chosen at 1813 based on the error and motion class, such as shown in FIGS. 12, 13, 14 , 15 .
- Error recovery filtering is performed at 1817 with tap data and filter coefficients selected from the coefficient memory 1815 corresponding to the ADRC class ID of 1807 , the motion class ID of 1809 and the error class ID of 1811 .
- Error recovered data and error free input data 1817 are selected at 1821 according to the error flag 1803 , which produces the output data 1823 of this system.
- FIG. 19 shows an example of coefficient memory contents. It has 4 ⁇ 4 ⁇ 8 or 128 class IDs according to the multiple classification scheme. Four categories are used for an error class, four categories are for a motion class, and eight categories are for an ADRC class, which are typically halved according to [formula 11]. Each class corresponds to each memory address in FIG. 19. In this example, 14 coefficients are stored in each class ID address according to the filter definition, like FIGS. 12, 13, 14 , 15 .
- the present invention may be used with any form of correlated data, including without limitation photographs or other two-dimensional static images, holograms, or other three-dimensional static images, video or other two-dimensional moving images, three-dimensional moving images, a monaural sound stream, or sound separated into a number of spatially related streams, such as stereo.
- FIG. 21 shows an example of audio signal adaptive classification compatible with the present invention.
- An example audio signal 2101 is monitored at one or more time points t 0 -t 8 .
- the level of the audio signal 2101 at time points t 0 -t 8 is given by tap points X 0 -X 8 .
- the dynamic range of the audio signal 2101 is given as the difference between the lowest level tap point X 0 and the highest level tap point X 4 .
- multiple classification can be applied with spatial classification like ADRC classification and spatial activity classification like dynamic range classification.
- Dynamic range classification is performed by thresholding the dynamic range in a manner similar to the motion classification processing of [formula 10].
- motion classification, error classification and spatial classification are referred to in multiple classification.
- Spatial activity classification can also be introduced to multiple classification for general applications such as video data.
- the standard deviation, the Laplacian value or the spatial gradient value can be introduced for spatial activity classification.
- the quality of data that is recovered due to errors is improved by introducing the disclosed technologies to the classified adaptive error recovery method.
- the present invention provides a way to restore a deteriorated signal to an undeteriorated signal which minimizes degradations on changing data.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Image Processing (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Complex Calculations (AREA)
- Image Analysis (AREA)
Abstract
Description
- This invention relates generally to the processing of image, sound or other correlated signals, and more particularly, to a method, apparatus, and article of manufacture for restoring a deteriorated signal to an undeteriorated signal.
- Conventionally, to restore an image that is deteriorated in image quality it is necessary to analyze the cause of the deterioration, determine a deterioration model function, and apply its inverse function to the deteriorated image. Various causes of deteriorations are possible, such as a uniform movement of a camera (imaging device such as a video camera) and blurring caused by the optical system of a camera. Therefore, in restoring an image, different model functions may be used for respective causes of deteriorations. Unless the cause of deterioration is found, it is difficult to restore a deteriorated image because a model function cannot be determined.
- In addition, it is frequently the case that even if a model function of a deterioration is established, there is no inverse function for restoration that corresponds to the model function. In such a case, it is difficult to perform evaluation for determining the optimum model.
- Conventionally, error recovery has been achieved by correlation evaluation. For example, some recovery choices have been implemented using a conventional error pixel recovery method. FIG. 1A shows a conventional error recovery block diagram. Using neighboring data, which are shown in FIG. 1B, spatial inclinations of the target data are detected. In this example, the inclinations regarding four directions are evaluated according to the formulae which are shown in FIG. 1C. An interpolation filter is chosen where the inclination value, E i, is the smallest among four values. In addition to the spatial inclination, a motion factor is also evaluated for error recovery. In the case of the motion area, a selected spatial filter is used for error recovery. On the other hand, the previous frame data at the same location as the target data are used for error recovery. This evaluation is performed in the evaluation block of FIG. 1A.
- The conventional error recovery process shown in FIGS. 1A-1C may cause many serious degradations on changing data, especially on object edges. Actual signal distribution typically varies widely, so these problems are likely to occur. Therefore, there is a need for a way to restore a deteriorated signal to an undeteriorated signal which minimizes degradations on changing data.
- The present invention provides a method, apparatus, and article of manufacture for restoring a deteriorated signal to an undeteriorated signal. A deteriorated signal consists of a plurality of deteriorated and undeteriorated data points. For each deteriorated data point, a plurality of class types is created based upon characteristics of the area containing the deteriorated data point. The data point is classified with respect to one of the plurality of class types and assigned a corresponding input signal class. The undeteriorated signal is generated by adaptive filtering of the input signal in accordance with the input signal classification results. More than one classification method may optionally be used to create the plurality of class types. Created classes may include a motion class, an error class, a spatial class or a spatial activity class. An adaptive class tap structure may optionally be used to create the plurality of class types. An adaptive filter tap structure may optionally be used base on the corresponding plurality of class types. Filter tap expansion may optionally be used to reduce the number of filter coefficients. The deteriorated input signal may optionally be modified by preprocessing peripheral erroneous data. A spatial class may optionally be modified according to spatial symmetry.
- The present invention is illustrated by way of example and may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like references indicate similar elements and in which:
- FIGS. 1A-1C show a conventional error recovery method, filter tap, and correspondence between inclination value and interpolation filter;
- FIGS. 2A-2D show a classified adaptive error recovery method and class compatible with an embodiment of the present invention;
- FIG. 3 shows a motion class tap compatible with an embodiment of the present invention;
- FIG. 4 shows an error class tap compatible with an embodiment of the present invention;
- FIG. 5 shows an adaptive spatial class tap compatible with an embodiment of the present invention;
- FIG. 6 shows an adaptive spatial class tap (error class 0) compatible with an embodiment of the present invention;
- FIG. 7 shows an adaptive spatial class tap (error class 1) compatible with an embodiment of the present invention;
- FIG. 8 shows an adaptive spatial class tap (error class 2) compatible with an embodiment of the present invention;
- FIG. 9 shows an adaptive spatial class tap (error class 3) compatible with an embodiment of the present invention;
- FIG. 10 shows an adaptive filter tap compatible with an embodiment of the present invention;
- FIG. 11 shows a motion class adaptive filter tap compatible with an embodiment of the present invention;
- FIG. 12 shows a motion class adaptive filter tap (error class 0) compatible with an embodiment of the present invention;
- FIG. 13 shows a motion class adaptive filter tap (error class 1) compatible with an embodiment of the present invention;
- FIG. 14 shows a motion class adaptive filter tap (error class 2) compatible with an embodiment of the present invention;
- FIG. 15 shows a motion class adaptive filter tap (error class 3) compatible with an embodiment of the present invention;
- FIG. 16 shows a preprocessing algorithm compatible with an embodiment of the present invention;
- FIG. 17 shows a motion tap and stationary tap preprocessing algorithm compatible with an embodiment of the present invention;
- FIG. 18 shows a system block diagram compatible with an embodiment of the present invention;
- FIG. 19 shows coefficient memory contents compatible with an embodiment of the present invention;
- FIG. 20 shows an ADRC class reduction based on a 4-tap 1-bit ADRC compatible with an embodiment of the present invention; and
- FIG. 21 shows an example of audio signal adaptive classification compatible with an embodiment of the present invention.
- In the following description of an embodiment of the present invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
- The present invention provides a method, apparatus, and article of manufacture for restoring a deteriorated signal to an undeteriorated signal using classified adaptive error recovery. Target data is the particular data of the deteriorated signal whose value is to be determined or estimated.
- Classified adaptive error recovery is the technology which utilizes classified adaptive filter processing. A proper classification with respect to the deteriorated input signal is performed according to the input signal characteristics. An adaptive filter is prepared for each class prior to error recovery processing.
- More than one classification method may optionally be used to generate the plurality of classes. Generated classes may include a motion class, an error class, a spatial activity class or a spatial class. An adaptive class tap structure may optionally be used to generate the plurality of classes. An adaptive filter tap structure may optionally be used according to the class which is detected in each deteriorated input signal. The adaptive filter tap structure may optionally be expanded based upon multiple taps. The number of filter coefficients that must be stored can be reduced by allocating the same coefficient to multiple taps. This process is referred to as filter tap expansion. The deteriorated input signal may optionally be modified by preprocessing peripheral erroneous data. A spatial class may optionally be eliminated according to a spatial class elimination formula.
- The present invention can be applied to any form of correlated data, including without limitation photographs or other two-dimensional static images, holograms, or other three-dimensional static images, video or other two-dimensional moving images, three-dimensional moving images, a monaural sound stream, or sound separated into a number of spatially related streams, such as stereo. In the description, the term value, in one embodiment, may refer to a component within a set of received or generated data. Furthermore, a data point is a position, place, instance, location or range within data.
- For the sake of clarity, some of the description herein focuses on video data comprising a pixel stream. However, it will be recognized that the present invention may be used with other types of data other than video data and that the terms and phrases used herein to describe the present invention cover a broad range of applications and data types. For example, an adaptive class tap structure is an adaptive structure for class tap definition used in multiple classification. A spatial class, a motion class and an error class may be used to define the structure. An adaptive filter tap structure is an adaptive structure for filter tap definition based upon a corresponding class.
- A class may be defined based on one or more characteristics of the target data. For example, a class may also be defined based on one or more characteristics of the group containing the target data. A class ID is a specific value within the class that is used to describe and differentiate the target data from other data with respect to a particular characteristic. A class ID may be represented by a number, a symbol, or a code within a defined range. A parameter may be used as a predetermined or variable quantity that is used in evaluating, estimating, or classifying the data. For example, the particular motion class ID of a target data can be determined by comparing the level of motion quantity in the block containing the target data against a parameter which can be a pre-determined threshold.
- Multiple Classification
- In one embodiment, a multiple class may be used as a collection of specific values or sets of values used to describe at least two different characteristics of the target data. For example, a multiple class may be defined to be a combination of at least two different classes. For example, a multiple class may be defined to be a combination of an error class, a motion class, and a spatial class such as an ADRC class.
- In one embodiment, the multiple class ID can be used as the memory address to locate the proper filter coefficients and other information that are used to determine or estimate the value of the target data. In one embodiment, a simple concatenation of different class IDs in the multiple class ID is used as the memory address.
- Therefore, a multiple classification scheme is a way of classifying the target data with respect to more than one characteristic of the target data in order to more accurately determine or estimate the value of the target data.
- An error class is a collection of specific values used to describe the various distribution patterns of erroneous data in the neighborhood of the target data. In one embodiment, an error class is defined to indicate which adjacent data to the target data is erroneous. An error class ID is a specific value within the error class used to describe a particular distribution pattern of erroneous data in the neighborhood of the target data. For example, an error class ID of “0” may be defined to indicate that there is no erroneous data to the left and to the right of the target data; an error class ID of “1” may be defined to indicate that the data to the left of the target data is erroneous, etc. A filter is a mathematical process, function or mask for selecting a group of data.
- A motion class is a collection of specific values used to describe the motion characteristic of the target data. In one embodiment, the motion class is defined based on the different levels of motion of the block containing the target data, for example, no motion in the block, little motion in the block, or large motion in the block. A motion class ID is a specific value within the motion class used to indicate a particular level of motion quantity of the target data. For example, motion class ID of “0” may be defined to indicate no motion, motion class ID of “3” may be defined to indicate large motion.
- A spatial class is a collection of specific values used to describe the spatial characteristic of the target data. For example, spatial classification of the data may be determined using Adaptive Dynamic Range Coding (ADRC), Differential Pulse Code Modulation (DPCM), Vector Quantization (VQ), Discrete Cosine Transform (DCT), etc. A spatial class ID is a specific value within the spatial class used to describe the spatial pattern of the target data in the group or block containing the target data.
- For example, an ADRC class is a spatial class defined by the Adaptive Dynamic Range Coding method. An ADRC class ID is a specific value within the ADRC class used to describe the spatial pattern of the data distribution in the group or block containing the target data. A class is a collection of specific values used to describe certain characteristics of the target data. A variety of different types of classes exist, for example, a motion class, a spatial class, an error class, a spatial activity class, etc.
- The present invention provides a method and apparatus for adaptive processing that generates data corresponding to a set of one or more data classes. This process is known as “classification”. Classification can be achieved by various attributes of signal distribution. For example, Adaptive Dynamic Range Coding (ADRC) may be used for generation of each class as a spatial class, but it will be recognized by one of ordinary skill in the art that other classes, including a motion class, an error class, and a spatial activity class may be used with the present invention without loss of generality. A spatial activity class is a collection of specific values used to describe the spatial activity characteristic of the target data. For example, spatial activity classification of the data may be determined using the dynamic range, the standard deviation, the Laplacian value or the spatial gradient value. Some classification methods provide advantages which are desirable before restoration of a deteriorated signal takes place. For example, ADRC can achieve classification by normalizing each signal waveform automatically.
- For each class, a suitable filter for signal restoration is prepared for the adaptive processing. In one embodiment, each filter is represented by a matrix of filter coefficients which are applied to the data. The filter coefficients can be generated by a training process, an example of which is described subsequently, that occurs as a preparation process prior to filtering. In one embodiment of the present invention, the filter coefficients can be stored in a random access memory (RAM), shown in FIG. 2A at 207.
- A typical signal processing flow of the present invention is shown in FIG. 2A. Target
input data 201 can be accompanied witherror flag data 203. Error flag data can indicate locations within the data that contain erroneous pixels. In one embodiment of the present invention, an ADRC class is generated for each input target data inclassification block 205, filter coefficients corresponding to each class ID are output from thecoefficient memory block 207, and filtering is executed withinput data 201 and the filter coefficients in thefilter block 209. The filtered data may correspond to an error recovered result. In theselector block 211, switching between error recovered data and error free data occurs according to theerror flag data 203. -
- where c corresponds to an ADRC class ID, DR represents the dynamic range of the four data area, MAX represents the maximum level of the four data, MIN represents the minimum level of the four data, q i is the ADRC encoded data, also referred to as a Q code, and Q is the number of quantization bits. The └·┘ operator represents a truncation operation.
- In 1-bit ADRC, c may have a value from 0 to 15 with Q=1. This process is one type of spatial classification, but it will be recognized by one of ordinary skill in the art that other examples of spatial classification, including Differential PCM, Vector Quantization and Discrete Cosine Transform may be used with the present invention without loss of generality. Any method may be used if it can classify a target data distribution.
-
- where x i is input data, wi corresponds to each filter coefficient, and y is the output data after error recovery. Filter coefficients can be generated for each class ID by a training process that occurs prior to the error recovery process.
-
-
- The coefficient w i can be obtained according to [formula 5], so that estimation errors against target data are minimized.
- In the example shown in FIG. 2C, 12 coefficients regarding each ADRC class ID are determined by the training method described above.
- A flow diagram of an embodiment of the present invention is shown in FIG. 2D. The flow chart of FIG. 2D shows the basic processing stream for generating an undeteriorated signal from the deteriorated input signal. At
step 215, the preprocessing for a peripheral erroneous pixel is performed. Atstep 217, each classification regarding the deteriorated input signal is executed to generate a class ID. Some class taps are selected adaptively according to another class ID. Multiple classification may be executed, such as motion classification, error classification, spatial activity classification and spatial classification. - The classification scheme can be defined during system design, where the classification scheme, the number of classes, and other specification are decided for the target data. The design stage may include, among others, considerations of system performance and hardware complexity.
- At
step 219, multiple classification generates a multiple class ID with a plurality of class IDs which are generated by various classification atstep 217. Atstep 221, filter taps are adaptively selected according to the multiple class ID which is generated atstep 219. Atstep 223, the filter tap structure is adaptively expanded according to the multiple class ID which is generated atstep 219. The number of filter coefficients that must be stored can be reduced by allocating the same coefficient to multiple taps. This process is referred to as filter tap expansion. Atstep 224, filter coefficients are selected according to the multiple class ID which is generated atstep 219. Atstep 225, filtering with respect to the deteriorated input signal is executed to generate an undeteriorated signal. Filter coefficients are selected adaptively according to the multiple class ID which is generated instep 219. - In one embodiment of the present invention, a three dimensional ADRC process may be used to realize spatio-temporal classification, because simple waveform classifications such as a two dimensional ADRC process typically cannot structurally achieve separation for general motion pictures in the class of FIG. 2B. If both stationary and motion areas are processed in the same class ID, error recovery quality is degraded because of differences in characteristics of the two areas.
- In another embodiment of the present invention, motion classification, in addition to spatial classification, may also be used to provide compact definition of temporal characteristics. Further, multiple classification may be added to the classified adaptive error recovery method. For example, there are various types of classes, such as a motion class, an error class, a spatial activity class and a spatial class explained above. The combination of one or more of these different classification methods can also improve classification quality.
- FIG. 3 shows an example of motion class tap structures. The example shows eight taps in neighborhood of the target error data. In this example, the eight tap accumulated temporal difference can be evaluated according to [formula 9], shown below, and is classified to four kinds of motion classes by thresholding based on [formula 10], shown below. In one embodiment of the present invention, th0 is equal to 3, th1 is equal to 8, and th2 is equal to 24.
- In the above formulas, fd represents an accumulated temporal difference, x i represents motion class tap data of the current frame, x′i represents the previous frame tap data corresponding to the current frame, and mc represents a motion class ID. Three thresholds, th0, th1, th2, can be used for this motion classification.
- In one embodiment of the present invention, an error class can be used in conjunction with the classified adaptive error recovery method. This classification is achieved according to the erroneous data distribution pattern in neighborhood of the target data, examples of which are shown in FIG. 4. This example has four error classes: an independent error case, a left error case, a right error case, and a three consecutive error case.
- Generally speaking, filter coefficients of pixels adjacent to the target data have larger weights for error recovery. The data adjacent to the error data has a significant impact on the result of error recovery. Error classes can reduce this influence by separating different characteristic areas to other classes according to the adjacent erroneous data distribution. For the example shown in FIG. 2B, ADRC classification generates 16 kinds of ADRC class IDs, where motion and error classification generate four kinds of class IDs, respectively. Thus, the number of class IDs equals 16×4×4, or 256. Classification may be realized by representing each signal characteristic. Multiple classification can define a suitable class, the class ID, regarding the erroneous target data by combining different classification characteristics.
- Adaptive Class Tap Structure
- In one embodiment of the present invention, an adaptive class tap structure can be used in conjunction with the classified adaptive error recovery method. FIG. 5 shows one example of motion class adaptive spatial class tap structures. Intra-frame taps can be chosen in a stationary or a slow motion area. Intra-field taps are typically used for larger motion areas. Suitable spatial classification is achieved by this adaptive processing.
- For example, if intra-frame taps are used for large motion area classification, then the generated class distribution may vary widely because of low correlation, and therefore it will be difficult to represent the target data characteristics properly. An adaptive class tap structure, such as that shown in FIG. 5, is therefore effective.
- Additional examples are shown in FIGS. 6, 7, 8, 9. Spatial class taps are typically selected according to a motion and an error class. In addition to the motion factor, the erroneous data distribution is taken into account for the spatial class tap definition. The neighboring erroneous data is typically not introduced to the spatial classification. By this definition, only valid data is used and the classification accuracy is improved.
- Adaptive Filter Tap Structure
- In one embodiment of the present invention, an adaptive filter tap structure based on a corresponding class can be used in conjunction with the classified adaptive error recovery method. FIG. 10 shows one example of an adaptive filter tap structures based on an error class. The filter tap structure regarding the target data is typically defined adaptively, preferably avoiding damaged data in neighborhood. Damaged data is not chosen for filtering.
- An adaptive filter tap structure can be also defined according to motion class, an example of which is shown in FIG. 11. In the motion class example shown in FIG. 10,
motion class 0 corresponds to stationary areas, butmotion class 3 corresponds to large motion areas. 1 and 2 correspond to intermediate motion areas.Motion classes - For stationary or quasi-stationary class areas, intra-frame taps are used as shown in FIG. 11. At the same time, previous frame data at the target data location may be used for error recovery filtering. These areas correspond to
0 and 1. For fast motion or moderate motion areas, each filter typically has an intra-field taps structure, which is also shown in FIG. 11. As shown by the example in FIG. 11, previous frame data is not introduced, and thus weakly correlated data is ignored. Filtering quality is typically improved by intra-field taps in such cases.motion class - FIG. 12 shows an example of motion and error class adaptive filter tap structures. FIGS. 10 and 11 represent error and motion class adaptive filter taps, respectively. The example shown in FIG. 12 illustrates both adaptive structures with error class0, which is the independent error case. Upper adaptive characteristics are also shown in this example. In a manner similar to that of FIG. 12, FIG. 13 corresponds to error
class 1, FIG. 14 corresponds to errorclass 2 and FIG. 15 corresponds to errorclass 3. - Filter Tap Expansion
- In one embodiment of the present invention, filter tap expansion by allocating the same coefficient to plural taps can be used in conjunction with the classified adaptive error recovery method. Filter tap expansion is also shown by the structures in FIGS. 12-15. For example, the filter tap structure has four of the same coefficient taps with
motion class 3 in FIG. 12. According to the evaluation results, some tap coefficients can be replaced with the same coefficient. The example shown in FIG. 12 has four W3 coefficients that are allocated at horizontally and vertically symmetric locations. By this expansion, 14 coefficients can cover 18 tap areas. This reduction method can typically reduce the need for coefficient memory and filtering hardware such as adders and multipliers. In one embodiment of the present invention, the expansion tap definition may be achieved by evaluation of coefficient distribution and visual results. - Preprocessing for Peripheral Erroneous Data
- In one embodiment of the present invention, preprocessing for peripheral erroneous data can be used in conjunction with the classified adaptive error recovery method. To achieve error recovery filtering, suitable data is necessary at peripheral error locations of filter taps.
- One example of this preprocessing is shown by the flow diagram of FIG. 16. If at
1601, 1605, or 1609 there is erroneous data at a peripheral location of the target data, atsteps 1603, 1607, 1611 the erroneous data is replaced with horizontal processed data in the case of no horizontal errors. If atsteps 1613, 1617, or 1621 there are three consecutive horizontal errors, atsteps 1615, 1619, or 1623 vertical processing is applied for generating preprocessed data. In all erroneous cases around the intra-frame data of this example, previous frame data is introduced for error processing, atsteps step 1625. - FIG. 17 shows another preprocessing example that uses a motion adaptive process for preprocessing. Using error free data, motion quantity is detected at the
motion detection step 1701. Generally speaking, an averaged motion quantity is calculated by averaging summed motion quantity with the number of error free data at the next step. Motion or stationary taps are chosen atstep 1703 according to a threshold value of the result of averaged motion quantity. After these steps, processingsteps 1705 through 1729 are performed in a manner similar tosteps 1601 through 1625 of FIG. 16. The preprocessed data is generated according to these prioritized processes, and is introduced for error recovery filtering. - Spatial Class Reduction
- In one embodiment of the present invention, spatial class reduction can be used in conjunction with the classified adaptive error recovery. As explained above, an ADRC class can be used for the spatial classification, given by [formula 3]. This has 16 kinds of class IDs in the definition of a 4 tap ADRC. These 16 class IDs can be reduced to eight kinds of class IDs according to [formula 11], shown below,
- where c corresponds to the ADRC class ID, q i is the quantized data and Q is the number of quantization bits based on [formula 1] and [formula 2].
- In one embodiment of the present invention, [formula 11] corresponds to a 1's complement operation in binary data of the ADRC code. This is related to the symmetric characteristics of each signal waveform. Because ADRC classification is a normalization of the target signal waveform, two waveforms which have the relation of 1's complement in each ADRC code can be classified in the same class ID. ADRC class IDs can typically be halved by this reduction process. An ADRC class reduction based on a 4-tap 1-bit ADRC is shown in FIG. 20. In this example, applying [formula 11] gives eight ADRC class pairs. Each pair contains spatial symmetric patterns, and therefore the number of ADRC class IDs can be reduced by half by taking advantage of these symmetric patterns. The spatial class reduction technique can also be applied to other spatial classification techniques, including but not limited to DPCM and Block Truncation Coding (BTC).
- System Structure
- An overall system structure for one embodiment of the present invention, including all the processes described above, is shown in FIG. 18.
Input data 1801 and correspondingerror flags 1803 are input to the system. Examining the error flags 1803, theinput data 1801 is preprocessed at 1805. ADRC classification is performed at 1807, motion classification is performed at 1809, and error classification is performed at 1811. - In this example, ADRC class taps are chosen adaptively according to the error and motion class, such as shown in FIGS. 6, 7, 8, 9. Filter tap data are chosen at 1813 based on the error and motion class, such as shown in FIGS. 12, 13, 14, 15. Error recovery filtering is performed at 1817 with tap data and filter coefficients selected from the
coefficient memory 1815 corresponding to the ADRC class ID of 1807, the motion class ID of 1809 and the error class ID of 1811. Error recovered data and errorfree input data 1817 are selected at 1821 according to theerror flag 1803, which produces theoutput data 1823 of this system. - FIG. 19 shows an example of coefficient memory contents. It has 4×4×8 or 128 class IDs according to the multiple classification scheme. Four categories are used for an error class, four categories are for a motion class, and eight categories are for an ADRC class, which are typically halved according to [formula 11]. Each class corresponds to each memory address in FIG. 19. In this example, 14 coefficients are stored in each class ID address according to the filter definition, like FIGS. 12, 13, 14, 15.
- The present invention may be used with any form of correlated data, including without limitation photographs or other two-dimensional static images, holograms, or other three-dimensional static images, video or other two-dimensional moving images, three-dimensional moving images, a monaural sound stream, or sound separated into a number of spatially related streams, such as stereo. FIG. 21 shows an example of audio signal adaptive classification compatible with the present invention. An
example audio signal 2101 is monitored at one or more time points t0-t8. The level of theaudio signal 2101 at time points t0-t8 is given by tap points X0-X8. The dynamic range of theaudio signal 2101 is given as the difference between the lowest level tap point X0 and the highest level tap point X4. In case of error recovery for erroneous data at t4, multiple classification can be applied with spatial classification like ADRC classification and spatial activity classification like dynamic range classification. Dynamic range classification is performed by thresholding the dynamic range in a manner similar to the motion classification processing of [formula 10]. As described above, motion classification, error classification and spatial classification are referred to in multiple classification. Spatial activity classification can also be introduced to multiple classification for general applications such as video data. In addition to dynamic range, the standard deviation, the Laplacian value or the spatial gradient value can be introduced for spatial activity classification. - With the present invention, the quality of data that is recovered due to errors is improved by introducing the disclosed technologies to the classified adaptive error recovery method. The present invention provides a way to restore a deteriorated signal to an undeteriorated signal which minimizes degradations on changing data.
- While the invention is described in terms of embodiments in a specific system environment, those of ordinary skill in the art will recognize that the invention can be practiced, with modification, in other and different hardware and software environments within the spirit and scope of the appended claims.
Claims (77)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/248,787 US6418548B1 (en) | 1999-02-12 | 1999-02-12 | Method and apparatus for preprocessing for peripheral erroneous data |
| AU28810/00A AU2881000A (en) | 1999-02-12 | 2000-02-11 | Method and apparatus for preprocessing for peripheral erroneous data |
| PCT/US2000/003740 WO2000048198A1 (en) | 1999-02-12 | 2000-02-11 | Preprocessing peripheral erroneous data, method and apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/248,787 US6418548B1 (en) | 1999-02-12 | 1999-02-12 | Method and apparatus for preprocessing for peripheral erroneous data |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20020087934A1 true US20020087934A1 (en) | 2002-07-04 |
| US6418548B1 US6418548B1 (en) | 2002-07-09 |
Family
ID=22940682
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/248,787 Expired - Fee Related US6418548B1 (en) | 1999-02-12 | 1999-02-12 | Method and apparatus for preprocessing for peripheral erroneous data |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US6418548B1 (en) |
| AU (1) | AU2881000A (en) |
| WO (1) | WO2000048198A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070132725A1 (en) * | 2005-12-14 | 2007-06-14 | Victor Company Of Japan, Limited. | Electronic Appliance |
| JP2017511045A (en) * | 2014-02-26 | 2017-04-13 | ドルビー ラボラトリーズ ライセンシング コーポレイション | Luminance-based coding tool for video compression |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1124384A1 (en) | 2000-02-10 | 2001-08-16 | Sony Corporation | Information processing apparatus for compressed image data using class-classification adaptive processing |
| JP3777599B2 (en) * | 2002-04-23 | 2006-05-24 | ソニー株式会社 | Image information conversion apparatus and method, coefficient calculation apparatus and method, coefficient data and coefficient data storage apparatus, image quality degradation point detection apparatus and method, recording medium, and program |
| KR100505663B1 (en) * | 2003-01-02 | 2005-08-03 | 삼성전자주식회사 | Progressive scan method of the display by adaptive edge dependent interpolation |
Family Cites Families (99)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3311879A (en) | 1963-04-18 | 1967-03-28 | Ibm | Error checking system for variable length data |
| US3805232A (en) | 1972-01-24 | 1974-04-16 | Honeywell Inf Systems | Encoder/decoder for code words of variable length |
| FR2387557A1 (en) | 1977-04-14 | 1978-11-10 | Telediffusion Fse | NOISE VISIBILITY REDUCTION SYSTEMS ON TELEVISION IMAGES |
| DE2952315A1 (en) | 1979-12-24 | 1981-07-02 | Fried. Krupp Gmbh, 4300 Essen | METHOD FOR PRESENTING A COMBAT SITUATION |
| GB2121642B (en) | 1982-05-26 | 1985-11-27 | Sony Corp | Error concealment in digital television signals |
| US4532628A (en) * | 1983-02-28 | 1985-07-30 | The Perkin-Elmer Corporation | System for periodically reading all memory locations to detect errors |
| US4574393A (en) | 1983-04-14 | 1986-03-04 | Blackwell George F | Gray scale image processor |
| GB2163619A (en) | 1984-08-21 | 1986-02-26 | Sony Corp | Error concealment in digital television signals |
| GB2164521B (en) | 1984-09-18 | 1988-02-03 | Sony Corp | Error concealment in digital television signals |
| EP0232417B1 (en) | 1985-10-02 | 1991-11-06 | Deutsche Thomson-Brandt GmbH | Process for correcting transmission errors |
| JP2512894B2 (en) | 1985-11-05 | 1996-07-03 | ソニー株式会社 | High efficiency coding / decoding device |
| JPS62231569A (en) | 1986-03-31 | 1987-10-12 | Fuji Photo Film Co Ltd | Quantizing method for estimated error |
| JP2751201B2 (en) | 1988-04-19 | 1998-05-18 | ソニー株式会社 | Data transmission device and reception device |
| US5122873A (en) | 1987-10-05 | 1992-06-16 | Intel Corporation | Method and apparatus for selectively encoding and decoding a digital motion video signal at multiple resolution levels |
| US5093872A (en) | 1987-11-09 | 1992-03-03 | Interand Corporation | Electronic image compression method and apparatus using interlocking digitate geometric sub-areas to improve the quality of reconstructed images |
| ATE109604T1 (en) | 1987-12-22 | 1994-08-15 | Philips Nv | VIDEO SIGNAL ENCODING AND DECODING WITH AN ADAPTIVE FILTER. |
| JPH02134989A (en) | 1988-11-15 | 1990-05-23 | Sanyo Electric Co Ltd | Solid-state image pickup device |
| US5150210A (en) | 1988-12-26 | 1992-09-22 | Canon Kabushiki Kaisha | Image signal restoring apparatus |
| JPH02248161A (en) | 1989-03-20 | 1990-10-03 | Fujitsu Ltd | Data transmission system |
| US5185746A (en) * | 1989-04-14 | 1993-02-09 | Mitsubishi Denki Kabushiki Kaisha | Optical recording system with error correction and data recording distributed across multiple disk drives |
| JPH02280462A (en) | 1989-04-20 | 1990-11-16 | Fuji Photo Film Co Ltd | Picture data compression method |
| DE69031638T2 (en) | 1989-05-19 | 1998-03-19 | Canon Kk | System for the transmission of image information |
| JPH03141752A (en) | 1989-10-27 | 1991-06-17 | Hitachi Ltd | Image signal transmission method |
| JP2533393B2 (en) | 1990-02-16 | 1996-09-11 | シャープ株式会社 | NTSC-HD converter |
| US5166987A (en) | 1990-04-04 | 1992-11-24 | Sony Corporation | Encoding apparatus with two stages of data compression |
| US5101446A (en) | 1990-05-31 | 1992-03-31 | Aware, Inc. | Method and apparatus for coding an image |
| US5243428A (en) | 1991-01-29 | 1993-09-07 | North American Philips Corporation | Method and apparatus for concealing errors in a digital television |
| US5636316A (en) | 1990-12-05 | 1997-06-03 | Hitachi, Ltd. | Picture signal digital processing unit |
| EP0493128B1 (en) | 1990-12-28 | 1999-06-23 | Canon Kabushiki Kaisha | Image processing apparatus |
| DE69225621T2 (en) | 1991-01-17 | 1998-11-12 | Mitsubishi Electric Corp | Device for coding a video signal |
| US5455629A (en) | 1991-02-27 | 1995-10-03 | Rca Thomson Licensing Corporation | Apparatus for concealing errors in a digital video processing system |
| JP3125451B2 (en) | 1991-11-05 | 2001-01-15 | ソニー株式会社 | Signal processing method |
| JPH04358486A (en) | 1991-06-04 | 1992-12-11 | Toshiba Corp | High efficiency code signal processing unit |
| JP2766919B2 (en) | 1991-06-07 | 1998-06-18 | 三菱電機株式会社 | Digital signal recording / reproducing device, digital signal recording device, digital signal reproducing device |
| US5263026A (en) | 1991-06-27 | 1993-11-16 | Hughes Aircraft Company | Maximum likelihood sequence estimation based equalization within a mobile digital cellular receiver |
| JPH05103309A (en) | 1991-10-04 | 1993-04-23 | Canon Inc | Method and device for transmitting information |
| US5400076A (en) | 1991-11-30 | 1995-03-21 | Sony Corporation | Compressed motion picture signal expander with error concealment |
| US5473479A (en) | 1992-01-17 | 1995-12-05 | Sharp Kabushiki Kaisha | Digital recording and/or reproduction apparatus of video signal rearranging components within a fixed length block |
| JP3360844B2 (en) | 1992-02-04 | 2003-01-07 | ソニー株式会社 | Digital image signal transmission apparatus and framing method |
| US5247363A (en) | 1992-03-02 | 1993-09-21 | Rca Thomson Licensing Corporation | Error concealment apparatus for hdtv receivers |
| US5307175A (en) | 1992-03-27 | 1994-04-26 | Xerox Corporation | Optical image defocus correction |
| US6164540A (en) * | 1996-05-22 | 2000-12-26 | Symbol Technologies, Inc. | Optical scanners |
| US5325203A (en) | 1992-04-16 | 1994-06-28 | Sony Corporation | Adaptively controlled noise reduction device for producing a continuous output |
| JP3438233B2 (en) | 1992-05-22 | 2003-08-18 | ソニー株式会社 | Image conversion apparatus and method |
| JP2976701B2 (en) | 1992-06-24 | 1999-11-10 | 日本電気株式会社 | Quantization bit number allocation method |
| US5359694A (en) | 1992-07-27 | 1994-10-25 | Teknekron Communications Systems, Inc. | Method and apparatus for converting image data |
| US5481554A (en) | 1992-09-02 | 1996-01-02 | Sony Corporation | Data transmission apparatus for transmitting code data |
| JPH06153180A (en) | 1992-09-16 | 1994-05-31 | Fujitsu Ltd | Image data encoding method and apparatus |
| JPH06121192A (en) | 1992-10-08 | 1994-04-28 | Sony Corp | Noise removal circuit |
| JPH06125533A (en) * | 1992-10-13 | 1994-05-06 | Sony Corp | Error correction code addition device and error correction device |
| US5689302A (en) | 1992-12-10 | 1997-11-18 | British Broadcasting Corp. | Higher definition video signals from lower definition sources |
| JP3165296B2 (en) | 1992-12-25 | 2001-05-14 | 三菱電機株式会社 | Inter-frame coding processing method, inter-frame coding processing method, and coding control method |
| JPH06205386A (en) | 1992-12-28 | 1994-07-22 | Canon Inc | Image playback device |
| US5416847A (en) | 1993-02-12 | 1995-05-16 | The Walt Disney Company | Multi-band, digital audio noise filter |
| US5737022A (en) | 1993-02-26 | 1998-04-07 | Kabushiki Kaisha Toshiba | Motion picture error concealment using simplified motion compensation |
| JP3259428B2 (en) * | 1993-03-24 | 2002-02-25 | ソニー株式会社 | Apparatus and method for concealing digital image signal |
| KR100261072B1 (en) | 1993-04-30 | 2000-07-01 | 윤종용 | Digital signal processing system |
| KR940026915A (en) | 1993-05-24 | 1994-12-10 | 오오가 노리오 | Digital video signal recording device and playback device and recording method |
| US5499057A (en) | 1993-08-27 | 1996-03-12 | Sony Corporation | Apparatus for producing a noise-reducded image signal from an input image signal |
| US5406334A (en) | 1993-08-30 | 1995-04-11 | Sony Corporation | Apparatus and method for producing a zoomed image signal |
| JPH0779424A (en) | 1993-09-06 | 1995-03-20 | Hitachi Ltd | Multipoint video communication device |
| JP3495766B2 (en) | 1993-10-01 | 2004-02-09 | テキサス インスツルメンツ インコーポレイテツド | Image processing method |
| US5546130A (en) | 1993-10-11 | 1996-08-13 | Thomson Consumer Electronics S.A. | Method and apparatus for forming a video signal using motion estimation and signal paths with different interpolation processing |
| JP2862064B2 (en) | 1993-10-29 | 1999-02-24 | 三菱電機株式会社 | Data decoding device, data receiving device, and data receiving method |
| KR100269213B1 (en) | 1993-10-30 | 2000-10-16 | 윤종용 | Method for coding audio signal |
| US5617333A (en) | 1993-11-29 | 1997-04-01 | Kokusai Electric Co., Ltd. | Method and apparatus for transmission of image data |
| JPH07203428A (en) | 1993-12-28 | 1995-08-04 | Canon Inc | Image processing method and apparatus |
| JP3321972B2 (en) | 1994-02-15 | 2002-09-09 | ソニー株式会社 | Digital signal recording device |
| JP3266416B2 (en) | 1994-04-18 | 2002-03-18 | ケイディーディーアイ株式会社 | Motion compensated interframe coding / decoding device |
| JP3336754B2 (en) | 1994-08-19 | 2002-10-21 | ソニー株式会社 | Digital video signal recording method and recording apparatus |
| US5903481A (en) | 1994-09-09 | 1999-05-11 | Sony Corporation | Integrated circuit for processing digital signal |
| US5577053A (en) | 1994-09-14 | 1996-11-19 | Ericsson Inc. | Method and apparatus for decoder optimization |
| JPH08140091A (en) | 1994-11-07 | 1996-05-31 | Kokusai Electric Co Ltd | Image transmission system |
| US5594807A (en) | 1994-12-22 | 1997-01-14 | Siemens Medical Systems, Inc. | System and method for adaptive filtering of images based on similarity between histograms |
| US5852470A (en) * | 1995-05-31 | 1998-12-22 | Sony Corporation | Signal converting apparatus and signal converting method |
| US6018317A (en) * | 1995-06-02 | 2000-01-25 | Trw Inc. | Cochannel signal processing system |
| US5946044A (en) | 1995-06-30 | 1999-08-31 | Sony Corporation | Image signal converting method and image signal converting apparatus |
| FR2736743B1 (en) * | 1995-07-10 | 1997-09-12 | France Telecom | METHOD FOR CONTROLLING THE OUTPUT RATE OF AN ENCODER OF DIGITAL DATA REPRESENTATIVE OF IMAGE SEQUENCES |
| JP3617879B2 (en) * | 1995-09-12 | 2005-02-09 | 株式会社東芝 | Disk repair method and disk repair device for real-time stream server |
| US6192191B1 (en) * | 1995-10-03 | 2001-02-20 | Canon Kabushiki Kaisha | Data storage based on serial numbers |
| KR0155900B1 (en) | 1995-10-18 | 1998-11-16 | 김광호 | Phase error detecting method and phase tracking loop circuit |
| KR970025184A (en) | 1995-10-26 | 1997-05-30 | 김광호 | Moving picture decoder using predictive macroblock transform |
| US5724369A (en) | 1995-10-26 | 1998-03-03 | Motorola Inc. | Method and device for concealment and containment of errors in a macroblock-based video codec |
| KR100196872B1 (en) | 1995-12-23 | 1999-06-15 | 전주범 | Apparatus for restoring error of image data in image decoder |
| KR100197366B1 (en) | 1995-12-23 | 1999-06-15 | 전주범 | Video Error Recovery Device |
| JPH09212650A (en) | 1996-02-05 | 1997-08-15 | Sony Corp | Motion vector detection device and detection method |
| US5778097A (en) | 1996-03-07 | 1998-07-07 | Intel Corporation | Table-driven bi-directional motion estimation using scratch area and offset valves |
| KR100242636B1 (en) | 1996-03-23 | 2000-02-01 | 윤종용 | Signal adaptive post processing system for reducing blocking effect and ringing noise |
| JP3876392B2 (en) | 1996-04-26 | 2007-01-31 | 富士通株式会社 | Motion vector search method |
| US5751862A (en) | 1996-05-08 | 1998-05-12 | Xerox Corporation | Self-timed two-dimensional filter |
| JP3352887B2 (en) | 1996-09-09 | 2002-12-03 | 株式会社東芝 | Divider with clamp, information processing apparatus provided with this divider with clamp, and clamp method in division processing |
| JP3466032B2 (en) | 1996-10-24 | 2003-11-10 | 富士通株式会社 | Video encoding device and decoding device |
| US5991447A (en) | 1997-03-07 | 1999-11-23 | General Instrument Corporation | Prediction and coding of bi-directionally predicted video object planes for interlaced digital video |
| AU1115499A (en) | 1997-10-23 | 1999-05-10 | Sony Electronics Inc. | Apparatus and method for providing robust error recovery for errors that occur in a lossy transmission environment |
| EP1025647B1 (en) | 1997-10-23 | 2012-06-27 | Sony Electronics, Inc. | Apparatus and method for recovery of lost/damaged data in a bitstream of data based on compatibility |
| US6192079B1 (en) | 1998-05-07 | 2001-02-20 | Intel Corporation | Method and apparatus for increasing video frame rate |
| US6137915A (en) | 1998-08-20 | 2000-10-24 | Sarnoff Corporation | Apparatus and method for error concealment for hierarchical subband coding and decoding |
| US6192161B1 (en) | 1999-02-12 | 2001-02-20 | Sony Corporation | Method and apparatus for adaptive filter tap selection according to a class |
| US6151416A (en) | 1999-02-12 | 2000-11-21 | Sony Corporation | Method and apparatus for adaptive class tap selection according to multiple classification |
-
1999
- 1999-02-12 US US09/248,787 patent/US6418548B1/en not_active Expired - Fee Related
-
2000
- 2000-02-11 WO PCT/US2000/003740 patent/WO2000048198A1/en not_active Ceased
- 2000-02-11 AU AU28810/00A patent/AU2881000A/en not_active Abandoned
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070132725A1 (en) * | 2005-12-14 | 2007-06-14 | Victor Company Of Japan, Limited. | Electronic Appliance |
| US8130306B2 (en) * | 2005-12-14 | 2012-03-06 | Victor Company Of Japan, Limited | Electronic appliance using video camera responsive to detected motion of an operator within detection zones when the motion exceeds a threshold |
| JP2017511045A (en) * | 2014-02-26 | 2017-04-13 | ドルビー ラボラトリーズ ライセンシング コーポレイション | Luminance-based coding tool for video compression |
| US11032553B2 (en) | 2014-02-26 | 2021-06-08 | Dolby Laboratories Licensing Corporation | Luminance based coding tools for video compression |
| US11729400B2 (en) | 2014-02-26 | 2023-08-15 | Dolby Laboratories Licensing Corporation | Luminance based coding tools for video compression |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2000048198A1 (en) | 2000-08-17 |
| AU2881000A (en) | 2000-08-29 |
| US6418548B1 (en) | 2002-07-09 |
| WO2000048198A8 (en) | 2001-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6192161B1 (en) | Method and apparatus for adaptive filter tap selection according to a class | |
| US6351494B1 (en) | Classified adaptive error recovery method and apparatus | |
| USRE42790E1 (en) | Occlusion/disocclusion detection using K-means clustering near object boundary with comparison of average motion of clusters to object and background motions | |
| US6522785B1 (en) | Classified adaptive error recovery method and apparatus | |
| US6535254B1 (en) | Method and device for noise reduction | |
| KR20100103838A (en) | Motion estimation with an adaptive search range | |
| EP1905243A1 (en) | Processing method and device with video temporal up-conversion | |
| US6591398B1 (en) | Multiple processing system | |
| US6621936B1 (en) | Method and apparatus for spatial class reduction | |
| WO2001035677A1 (en) | Video signal noise level estimator | |
| EP1222614B1 (en) | Method and apparatus for adaptive class tap selection according to multiple classification | |
| US6307979B1 (en) | Classified adaptive error recovery method and apparatus | |
| US6754371B1 (en) | Method and apparatus for past and future motion classification | |
| JP2007124650A (en) | Method for reducing noise in digital video, spatio-temporal filter for reducing noise in a video signal, and method for reducing noise in a digital video frame | |
| US6519369B1 (en) | Method and apparatus for filter tap expansion | |
| EP1623568B1 (en) | De-interlacing of video data | |
| US6418548B1 (en) | Method and apparatus for preprocessing for peripheral erroneous data | |
| JP2002536935A5 (en) | ||
| US6154761A (en) | Classified adaptive multiple processing system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SONY ELECTRONICS, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONDO, TETSUJIRO;REEL/FRAME:010012/0004 Effective date: 19990510 Owner name: SONY CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GHOSAL, SUGATA;REEL/FRAME:010011/0989 Effective date: 19990510 Owner name: SONY CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONDO, TETSUJIRO;REEL/FRAME:010012/0004 Effective date: 19990510 Owner name: SONY ELECTRONICS, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GHOSAL, SUGATA;REEL/FRAME:010011/0989 Effective date: 19990510 Owner name: SONY ELECTRONICS, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUJIMORI, YASUHIRO;CARRIG, JAMES J.;REEL/FRAME:010011/0967 Effective date: 19990423 Owner name: SONY CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUJIMORI, YASUHIRO;CARRIG, JAMES J.;REEL/FRAME:010011/0967 Effective date: 19990423 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140709 |