CN116304337A - Object recommendation model training method, recommendation object determining method and device - Google Patents
Object recommendation model training method, recommendation object determining method and device Download PDFInfo
- Publication number
- CN116304337A CN116304337A CN202310274863.7A CN202310274863A CN116304337A CN 116304337 A CN116304337 A CN 116304337A CN 202310274863 A CN202310274863 A CN 202310274863A CN 116304337 A CN116304337 A CN 116304337A
- Authority
- CN
- China
- Prior art keywords
- user
- characterization
- representation
- embedding
- recommendation model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域Technical Field
本说明书实施例通常涉及对象推荐领域,尤其涉及对象推荐模型训练方法、推荐对象确定方法及装置。The embodiments of this specification generally relate to the field of object recommendation, and more particularly to an object recommendation model training method, a recommended object determination method and device.
背景技术Background Art
随着人工智能技术发展,基于对象推荐模型的对象推荐方案被越来越多地应用于对象推荐场景。对象推荐模型是一种机器学习模型。对象推荐模型通常可以基于序列行为进行模型建模或者基于解耦学习进行模型建模。常见的基于序列行为的建模方案通常仅仅基于历史行为来学习由用户兴趣单一主导的嵌入(embedding)表征,而不会对潜在的各个行为意图进行区分。常见的基于解耦学习的建模方案难以显式地包含对象推荐时的比如用户从众、用户风险偏好等的用户意图。此外,由于缺少带标签数据对这些用户意图进行显式约束,难以在建模中很好地表征这些用户意图。基于序列行为的建模方案以及基于解耦学习的建模方案的上述缺陷,使得上述基于序列行为的建模方案以及基于解耦学习的建模方案不适合应用于一些对象推荐场景,比如,商品智能推荐场景、基金智能推荐场景等。With the development of artificial intelligence technology, object recommendation schemes based on object recommendation models are increasingly being applied to object recommendation scenarios. Object recommendation models are a type of machine learning model. Object recommendation models can usually be modeled based on sequential behavior or based on decoupled learning. Common modeling schemes based on sequential behavior usually only learn embedding representations dominated by user interests based on historical behavior, without distinguishing between potential behavioral intentions. Common modeling schemes based on decoupled learning are difficult to explicitly include user intentions such as user conformity and user risk preferences when recommending objects. In addition, due to the lack of labeled data to explicitly constrain these user intentions, it is difficult to well characterize these user intentions in modeling. The above-mentioned defects of the modeling schemes based on sequential behavior and the modeling schemes based on decoupled learning make the above-mentioned modeling schemes based on sequential behavior and the modeling schemes based on decoupled learning unsuitable for application in some object recommendation scenarios, such as commodity intelligent recommendation scenarios, fund intelligent recommendation scenarios, etc.
发明内容Summary of the invention
本说明书实施例提供对象推荐模型训练方法、推荐对象确定方法及装置。利用该对象推荐模型训练方案,可以基于用户兴趣以及用户从众心理和用户风险偏好进行对象推荐模型建模,由此提升对象推荐模型的用户理解效果。The embodiments of this specification provide an object recommendation model training method, a recommended object determination method and a device. Using the object recommendation model training scheme, an object recommendation model can be built based on user interests, user herd mentality and user risk preference, thereby improving the user understanding effect of the object recommendation model.
根据本说明书实施例的一个方面,提供一种用于训练对象推荐模型的方法,所述对象推荐模型用于确定是否向用户推荐目标对象,所述方法包括:循环执行下述模型训练过程,直到满足训练结束条件:将用户特征、用户交互对象的对象特征和目标对象的对象特征分别提供给所述对象推荐模型的嵌入层,得到所述用户特征的用户特征嵌入表征、所述用户交互对象的对象特征嵌入表征和所述目标对象的对象特征嵌入表征;经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征;将所述用户特征嵌入表征分别与所述用户兴趣嵌入表征和所述用户从众嵌入表征融合,并将所得到的融合结果和所述目标对象的对象特征嵌入表征分别提供给所述对象推荐模型的表征层得到用户兴趣表征、用户从众表征和目标对象表征;基于所述用户兴趣表征与所述目标对象表征预测用户兴趣预测结果,以及基于所述用户从众表征与所述目标对象表征预测用户从众预测结果;以及响应于不满足所述训练结束条件,基于所述用户兴趣预测结果和所述用户从众预测结果确定总损失函数,并根据所述总损失函数调整所述对象推荐模型的模型参数。According to one aspect of an embodiment of the present specification, a method for training an object recommendation model is provided, wherein the object recommendation model is used to determine whether to recommend a target object to a user, the method comprising: looping through the following model training process until a training end condition is met: providing user features, object features of user interaction objects, and object features of target objects to an embedding layer of the object recommendation model, respectively, to obtain a user feature embedding representation of the user features, an object feature embedding representation of the user interaction objects, and an object feature embedding representation of the target object; decoupling, via a decoupling layer of the object recommendation model, a user interest embedding representation and a user interest embedding representation corresponding to user interests and user herd mentality, respectively, from the object feature embedding representation of the user interaction objects The invention relates to a method for preparing a user conformity embedding representation; fusing the user feature embedding representation with the user interest embedding representation and the user conformity embedding representation, and providing the obtained fusion result and the object feature embedding representation of the target object to the representation layer of the object recommendation model to obtain the user interest representation, the user conformity representation and the target object representation; predicting the user interest prediction result based on the user interest representation and the target object representation, and predicting the user conformity prediction result based on the user conformity representation and the target object representation; and in response to the training end condition not being met, determining the total loss function based on the user interest prediction result and the user conformity prediction result, and adjusting the model parameters of the object recommendation model according to the total loss function.
可选地,在上述方面的一个示例中,所述方法还可以包括:将所述目标对象和所述用户交互对象的对象特征嵌入表征分别提供给所述对象推荐模型的图神经网络来基于对象知识图谱进行图增强处理,得到所述目标对象和所述用户交互对象的经过图增强处理后的对象特征嵌入表征。Optionally, in an example of the above aspect, the method may also include: providing the object feature embedding representations of the target object and the user interaction object to the graph neural network of the object recommendation model respectively to perform graph enhancement processing based on the object knowledge graph, so as to obtain the object feature embedding representations of the target object and the user interaction object after graph enhancement processing.
可选地,在上述方面的一个示例中,所述用户交互对象包括至少两个用户交互对象。经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征可以包括:经由所述对象推荐模型的解耦层,从各个用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的对象特征嵌入表征分量并进行级联,得到用户兴趣嵌入表征和用户从众嵌入表征。Optionally, in an example of the above aspect, the user interaction object includes at least two user interaction objects. Decoupling the user interest embedding representation and the user conformity embedding representation corresponding to the user interest and the user conformity psychology respectively from the object feature embedding representation of the user interaction object via the decoupling layer of the object recommendation model may include: decoupling the object feature embedding representation components corresponding to the user interest and the user conformity psychology respectively from the object feature embedding representation of each user interaction object via the decoupling layer of the object recommendation model and cascading them to obtain the user interest embedding representation and the user conformity embedding representation.
可选地,在上述方面的一个示例中,经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征可以包括:经由所述对象推荐模型的解耦层基于无监督机制,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征。Optionally, in an example of the above aspect, decoupling a user interest embedding representation and a user conformity embedding representation corresponding to user interest and user conformity respectively from the object feature embedding representation of the user interaction object via the decoupling layer of the object recommendation model may include: decoupling a user interest embedding representation and a user conformity embedding representation corresponding to user interest and user conformity respectively from the object feature embedding representation of the user interaction object based on an unsupervised mechanism via the decoupling layer of the object recommendation model.
可选地,在上述方面的一个示例中,所述解耦层包括自注意力网络。经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征可以包括:将所述用户交互对象的对象特征嵌入表征提供给所述自注意力网络,以从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征。Optionally, in an example of the above aspect, the decoupling layer includes a self-attention network. Decoupling the user interest embedding representation and the user conformity embedding representation corresponding to the user interest and the user conformity psychology respectively from the object feature embedding representation of the user interaction object via the decoupling layer of the object recommendation model may include: providing the object feature embedding representation of the user interaction object to the self-attention network to decouple the user interest embedding representation and the user conformity embedding representation corresponding to the user interest and the user conformity psychology respectively from the object feature embedding representation of the user interaction object.
可选地,在上述方面的一个示例中,基于所述用户兴趣预测结果和所述用户从众预测结果确定总损失函数可以包括:基于所述用户兴趣预测结果确定用户兴趣损失项;基于所述用户从众预测结果确定用户从众损失项;以及根据所述用户兴趣损失项和所述用户从众损失项,确定所述总损失函数。Optionally, in an example of the above aspect, determining the total loss function based on the user interest prediction result and the user conformity prediction result may include: determining a user interest loss term based on the user interest prediction result; determining a user conformity loss term based on the user conformity prediction result; and determining the total loss function based on the user interest loss term and the user conformity loss term.
可选地,在上述方面的一个示例中,所述目标对象具有基于对象交互历史行为中的交互次数确定的对象热门度,所述用户兴趣损失项基于所述用户兴趣预测结果和所述目标对象的对象热门度确定,以及所述用户从众损失项基于所述用户从众预测结果和所述目标对象的对象热门度确定。Optionally, in an example of the above aspect, the target object has an object popularity determined based on the number of interactions in the object interaction history behavior, the user interest loss item is determined based on the user interest prediction result and the object popularity of the target object, and the user conformity loss item is determined based on the user conformity prediction result and the object popularity of the target object.
可选地,在上述方面的一个示例中,将用户特征、用户交互对象的对象特征和目标对象的对象特征分别提供给所述对象推荐模型的嵌入层,得到所述用户特征的用户特征嵌入表征、所述用户交互对象的对象特征嵌入表征和所述目标对象的对象特征嵌入表征可以包括:将用户特征、用户交互对象的对象特征、目标对象的对象特征和用户交互对象的对象类型分别提供给所述对象推荐模型的嵌入层,得到所述用户特征的用户特征嵌入表征、所述用户交互对象的对象特征嵌入表征、所述目标对象的对象特征嵌入表征和所述用户交互对象的对象类型嵌入表征。经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征可以包括:经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。将所得到的融合结果和所述目标对象的对象特征嵌入表征分别提供给所述对象推荐模型的表征层得到用户兴趣表征、用户从众表征和目标对象表征可以包括:将所得到的融合结果、所述目标对象的对象特征嵌入表征、所述用户交互对象的对象类型嵌入表征分别提供给所述对象推荐模型的表征层得到用户兴趣表征、用户从众表征、目标对象表征以及用户风险偏好表征。基于所述用户兴趣预测结果和所述用户从众预测结果确定总损失函数可以包括:基于所述用户兴趣预测结果、所述用户从众预测结果、所述风险偏好嵌入表征和所述用户风险偏好表征确定总损失函数。Optionally, in an example of the above aspect, providing the user features, the object features of the user interaction object, and the object features of the target object to the embedding layer of the object recommendation model to obtain the user feature embedding representation of the user features, the object feature embedding representation of the user interaction object, and the object feature embedding representation of the target object may include: providing the user features, the object features of the user interaction object, the object features of the target object, and the object type of the user interaction object to the embedding layer of the object recommendation model to obtain the user feature embedding representation of the user features, the object feature embedding representation of the user interaction object, the object feature embedding representation of the target object, and the object type embedding representation of the user interaction object. Decoupling the user interest embedding representation and the user conformity embedding representation corresponding to the user interest and the user conformity psychology respectively from the object feature embedding representation of the user interaction object via the decoupling layer of the object recommendation model may include: decoupling the user interest embedding representation, the user conformity embedding representation, and the user risk preference embedding representation corresponding to the user interest, the user conformity psychology, and the user risk preference respectively from the object feature embedding representation of the user interaction object via the decoupling layer of the object recommendation model. Providing the obtained fusion result and the object feature embedding representation of the target object to the representation layer of the object recommendation model to obtain the user interest representation, the user conformity representation and the target object representation may include: providing the obtained fusion result, the object feature embedding representation of the target object, and the object type embedding representation of the user interaction object to the representation layer of the object recommendation model to obtain the user interest representation, the user conformity representation, the target object representation and the user risk preference representation. Determining the total loss function based on the user interest prediction result and the user conformity prediction result may include: determining the total loss function based on the user interest prediction result, the user conformity prediction result, the risk preference embedding representation and the user risk preference representation.
可选地,在上述方面的一个示例中,基于所述用户兴趣预测结果、所述用户从众预测结果、所述风险偏好嵌入表征和所述用户风险偏好表征确定总损失函数可以包括:基于所述用户兴趣预测结果确定用户兴趣损失项;基于所述用户从众预测结果确定用户从众损失项;基于所述风险偏好嵌入表征和所述用户风险偏好表征确定用户风险偏好损失项;以及根据所述用户兴趣损失项、所述用户从众损失项和所述用户风险偏好损失项,确定所述总损失函数。Optionally, in an example of the above aspect, determining the total loss function based on the user interest prediction result, the user conformity prediction result, the risk preference embedding representation and the user risk preference representation may include: determining a user interest loss term based on the user interest prediction result; determining a user conformity loss term based on the user conformity prediction result; determining a user risk preference loss term based on the risk preference embedding representation and the user risk preference representation; and determining the total loss function based on the user interest loss term, the user conformity loss term and the user risk preference loss term.
可选地,在上述方面的一个示例中,所述用户风险偏好损失项具有加权值,所述加权值用于定义所述用户风险偏好损失项对所述总损失函数的贡献度。根据所述用户兴趣损失项、所述用户从众损失项和所述用户风险偏好损失项,确定所述总损失函数可以包括:根据所述用户兴趣损失项、所述用户从众损失项和经过加权后的用户风险偏好损失项,确定所述总损失函数。Optionally, in an example of the above aspect, the user risk preference loss term has a weighted value, and the weighted value is used to define the contribution of the user risk preference loss term to the total loss function. Determining the total loss function according to the user interest loss term, the user conformity loss term, and the user risk preference loss term may include: determining the total loss function according to the user interest loss term, the user conformity loss term, and the weighted user risk preference loss term.
可选地,在上述方面的一个示例中,所述对象知识图谱基于推荐类型对象与关联类型对象之间的关系创建。Optionally, in an example of the above aspect, the object knowledge graph is created based on the relationship between the recommended type objects and the associated type objects.
根据本说明书的实施例的另一方面,提供一种用于基于对象推荐模型确定推荐对象的方法,包括:将用户特征、用户交互对象的对象特征和目标对象的对象特征分别提供给所述对象推荐模型的嵌入层,得到所述用户特征的用户特征嵌入表征、所述用户交互对象的对象特征嵌入表征和所述目标对象的对象特征嵌入表征;经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征;将所述用户特征嵌入表征分别与所述用户兴趣嵌入表征和所述用户从众嵌入表征融合,并将所得到的融合结果和所述目标对象的对象特征嵌入表征分别提供给所述对象推荐模型的表征层得到用户兴趣表征、用户从众表征和目标对象表征;以及基于所述用户兴趣表征、所述用户从众表征以及所述目标对象表征,确定是否向用户推荐所述目标对象。According to another aspect of an embodiment of the present specification, a method for determining a recommended object based on an object recommendation model is provided, comprising: providing user features, object features of user interaction objects, and object features of a target object to an embedding layer of the object recommendation model, respectively, to obtain a user feature embedding representation of the user features, an object feature embedding representation of the user interaction objects, and an object feature embedding representation of the target object; decoupling a user interest embedding representation and a user conformity embedding representation, which correspond to user interests and user herd mentality, respectively, from the object feature embedding representation of the user interaction objects via a decoupling layer of the object recommendation model; fusing the user feature embedding representation with the user interest embedding representation and the user herd embedding representation, respectively, and providing the obtained fusion result and the object feature embedding representation of the target object to the representation layer of the object recommendation model, respectively, to obtain a user interest representation, a user herd representation, and a target object representation; and determining whether to recommend the target object to the user based on the user interest representation, the user herd representation, and the target object representation.
可选地,在上述方面的一个示例中,基于所述用户兴趣表征、所述用户从众表征以及所述目标对象表征,确定是否向用户推荐所述目标对象可以包括:分别基于所述用户兴趣表征与所述目标对象表征以及基于所述用户从众表征与所述目标对象表征预测用户兴趣预测结果和用户从众预测结果;以及根据所述用户兴趣预测结果和所述用户从众预测结果,确定是否向用户推荐所述目标对象。Optionally, in an example of the above aspect, determining whether to recommend the target object to the user based on the user interest representation, the user conformity representation and the target object representation may include: predicting a user interest prediction result and a user conformity prediction result based on the user interest representation and the target object representation and based on the user conformity representation and the target object representation, respectively; and determining whether to recommend the target object to the user based on the user interest prediction result and the user conformity prediction result.
可选地,在上述方面的一个示例中,所述方法还可以包括:将所述目标对象和所述用户交互对象的对象特征嵌入表征分别提供给所述对象推荐模型的图神经网络来基于对象知识图谱进行图增强处理,得到所述目标对象和所述用户交互对象的经过图增强处理后的对象特征嵌入表征。Optionally, in an example of the above aspect, the method may also include: providing the object feature embedding representations of the target object and the user interaction object to the graph neural network of the object recommendation model respectively to perform graph enhancement processing based on the object knowledge graph, so as to obtain the object feature embedding representations of the target object and the user interaction object after graph enhancement processing.
可选地,在上述方面的一个示例中,所述对象推荐模型根据如上所述的方法训练出。Optionally, in an example of the above aspect, the object recommendation model is trained according to the method described above.
根据本说明书的实施例的另一方面,提供一种用于训练对象推荐模型的装置,所述对象推荐模型用于确定是否向用户推荐目标对象,所述装置包括:第一表征生成单元,将用户特征、用户交互对象的对象特征和目标对象的对象特征分别提供给所述对象推荐模型的嵌入层,得到所述用户特征的用户特征嵌入表征、所述用户交互对象的对象特征嵌入表征和所述目标对象的对象特征嵌入表征;嵌入表征解耦单元,经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征;第二表征生成单元,将所述用户特征嵌入表征分别与所述用户兴趣嵌入表征和所述用户从众嵌入表征融合,并将所得到的融合结果和所述目标对象的对象特征嵌入表征分别提供给所述对象推荐模型的表征层得到用户兴趣表征、用户从众表征和目标对象表征;目标对象预测单元,基于所述用户兴趣表征与所述目标对象表征预测用户兴趣预测结果,以及基于所述用户从众表征与所述目标对象表征预测用户从众预测结果;损失函数确定单元,响应于不满足训练结束条件,基于所述用户兴趣预测结果和所述用户从众预测结果确定总损失函数;以及模型调整单元,根据所述总损失函数调整所述对象推荐模型的模型参数,其中,所述第一表征生成单元、所述图增强处理单元、所述嵌入表征解耦单元、所述第二表征生成单元、所述第三表征生成单元、所述目标对象预测单元、所述损失函数确定单元和所述模型调整单元循环执行操作,直到满足所述训练结束条件。According to another aspect of an embodiment of the present specification, there is provided an apparatus for training an object recommendation model, wherein the object recommendation model is used to determine whether to recommend a target object to a user, the apparatus comprising: a first representation generation unit, which provides user features, object features of user interaction objects, and object features of target objects to an embedding layer of the object recommendation model, respectively, to obtain a user feature embedding representation of the user features, an object feature embedding representation of the user interaction objects, and an object feature embedding representation of the target object; an embedding representation decoupling unit, which decouples a user interest embedding representation and a user conformity embedding representation, which correspond to user interests and user conformity psychology, respectively, from the object feature embedding representation of the user interaction objects via the decoupling layer of the object recommendation model; a second representation generation unit, which fuses the user feature embedding representation with the user interest embedding representation and the user conformity embedding representation, respectively, and combines the obtained fusion result with the target object embedding representation. The object feature embedding representation of the image is respectively provided to the representation layer of the object recommendation model to obtain the user interest representation, the user conformity representation and the target object representation; the target object prediction unit predicts the user interest prediction result based on the user interest representation and the target object representation, and predicts the user conformity prediction result based on the user conformity representation and the target object representation; the loss function determination unit determines the total loss function based on the user interest prediction result and the user conformity prediction result in response to the training end condition not being met; and the model adjustment unit adjusts the model parameters of the object recommendation model according to the total loss function, wherein the first representation generation unit, the graph enhancement processing unit, the embedding representation decoupling unit, the second representation generation unit, the third representation generation unit, the target object prediction unit, the loss function determination unit and the model adjustment unit perform operations in a loop until the training end condition is met.
根据本说明书的实施例的另一方面,提供一种用于基于对象推荐模型确定推荐对象的装置,包括:第一表征生成单元,将用户特征、用户交互对象的对象特征和目标对象的对象特征分别提供给所述对象推荐模型的嵌入层,得到所述用户特征的用户特征嵌入表征、所述用户交互对象的对象特征嵌入表征和所述目标对象的对象特征嵌入表征;嵌入表征解耦单元,经由所述对象推荐模型的解耦层,从所述用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征;第二表征生成单元,将所述用户特征嵌入表征分别与所述用户兴趣嵌入表征和所述用户从众嵌入表征融合,并将所得到的融合结果和所述目标对象的对象特征嵌入表征分别提供给所述对象推荐模型的表征层得到用户兴趣表征、用户从众表征和目标对象表征;以及推荐决策单元,基于所述用户兴趣表征、所述用户从众表征以及所述目标对象表征,确定是否向用户推荐所述目标对象。According to another aspect of an embodiment of the present specification, there is provided an apparatus for determining a recommended object based on an object recommendation model, comprising: a first representation generation unit, which provides user features, object features of user interaction objects, and object features of target objects to an embedding layer of the object recommendation model, respectively, to obtain a user feature embedding representation of the user features, an object feature embedding representation of the user interaction objects, and an object feature embedding representation of the target object; an embedding representation decoupling unit, which decouples a user interest embedding representation and a user conformity embedding representation corresponding to user interests and user conformity, respectively, from the object feature embedding representation of the user interaction objects via the decoupling layer of the object recommendation model; a second representation generation unit, which fuses the user feature embedding representation with the user interest embedding representation and the user conformity embedding representation, respectively, and provides the obtained fusion result and the object feature embedding representation of the target object to the representation layer of the object recommendation model, respectively, to obtain a user interest representation, a user conformity representation, and a target object representation; and a recommendation decision unit, which determines whether to recommend the target object to the user based on the user interest representation, the user conformity representation, and the target object representation.
可选地,在上述方面的一个示例中,所述装置还可以包括:图增强处理单元,将所述目标对象和所述用户交互对象的对象特征嵌入表征分别提供给所述对象推荐模型的图神经网络来基于对象知识图谱进行图增强处理,得到所述目标对象和所述用户交互对象的经过图增强处理后的对象特征嵌入表征。Optionally, in an example of the above aspect, the device may also include: a graph enhancement processing unit, which provides the object feature embedding representations of the target object and the user interaction object to the graph neural network of the object recommendation model respectively to perform graph enhancement processing based on the object knowledge graph to obtain the object feature embedding representations of the target object and the user interaction object after graph enhancement processing.
根据本说明书的实施例的另一方面,提供一种对象推荐系统,包括:交互对象获取装置,获取用户交互对象;如上所述的用于训练对象推荐模型的装置;以及如上所述的用于基于对象推荐模型确定推荐对象的装置。According to another aspect of an embodiment of the present specification, there is provided an object recommendation system, comprising: an interactive object acquisition device for acquiring a user interactive object; a device for training an object recommendation model as described above; and a device for determining a recommended object based on the object recommendation model as described above.
根据本说明书的实施例的另一方面,提供一种用于训练对象推荐模型的装置,包括:至少一个处理器,与所述至少一个处理器耦合的存储器,以及存储在所述存储器中的计算机程序,所述至少一个处理器执行所述计算机程序来实现如上所述的用于训练对象推荐模型的方法。According to another aspect of an embodiment of the present specification, there is provided an apparatus for training an object recommendation model, comprising: at least one processor, a memory coupled to the at least one processor, and a computer program stored in the memory, wherein the at least one processor executes the computer program to implement the method for training an object recommendation model as described above.
根据本说明书的实施例的另一方面,提供一种用于基于对象推荐模型确定推荐对象的装置,包括:至少一个处理器,与所述至少一个处理器耦合的存储器,以及存储在所述存储器中的计算机程序,所述至少一个处理器执行所述计算机程序来实现如上所述的用于基于对象推荐模型确定推荐对象的方法。According to another aspect of an embodiment of the present specification, there is provided an apparatus for determining a recommended object based on an object recommendation model, comprising: at least one processor, a memory coupled to the at least one processor, and a computer program stored in the memory, wherein the at least one processor executes the computer program to implement the method for determining a recommended object based on an object recommendation model as described above.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过参照下面的附图,可以实现对于本说明书内容的本质和优点的进一步理解。在附图中,类似组件或特征可以具有相同的附图标记。A further understanding of the nature and advantages of the content of this specification may be achieved by referring to the following drawings. In the accompanying drawings, similar components or features may have the same reference numerals.
图1示出了根据本说明书的实施例的基于对象推荐模型的对象推荐系统的方框示意图。FIG1 shows a block diagram of an object recommendation system based on an object recommendation model according to an embodiment of the present specification.
图2示出了根据本说明书的实施例的对象推荐模型的示例示意图。FIG. 2 shows an example schematic diagram of an object recommendation model according to an embodiment of the present specification.
图3示出了根据本说明书的实施例的用于训练对象推荐模型的方法的示例流程图。FIG. 3 shows an example flow chart of a method for training an object recommendation model according to an embodiment of the present specification.
图4示出了根据本说明书的实施例的总损失函数确定过程的示例流程图。FIG. 4 shows an example flow chart of a total loss function determination process according to an embodiment of the present specification.
图5示出了根据本说明书的实施例的对象推荐模型训练过程的示例示意图。FIG. 5 shows an example schematic diagram of an object recommendation model training process according to an embodiment of the present specification.
图6示出了根据本说明书的实施例的用于基于对象推荐模型确定推荐对象的方法的示例流程图。FIG. 6 shows an example flow chart of a method for determining a recommended object based on an object recommendation model according to an embodiment of the present specification.
图7示出了根据本说明书的实施例的对象推荐过程的示例示意图。FIG. 7 shows an example schematic diagram of an object recommendation process according to an embodiment of the present specification.
图8示出了根据本说明书的实施例的对象推荐模型训练装置的示例方框图。FIG. 8 shows an example block diagram of an object recommendation model training device according to an embodiment of this specification.
图9示出了根据本说明书的实施例的损失函数确定单元的示例方框图。FIG. 9 shows an example block diagram of a loss function determination unit according to an embodiment of the present specification.
图10示出了根据本说明书的实施例的对象推荐装置的示例方框图。FIG. 10 shows an exemplary block diagram of an object recommendation device according to an embodiment of the present specification.
图11示出了根据本说明书的实施例的基于计算机系统实现的对象推荐模型训练装置的示例示意图。FIG. 11 shows an example schematic diagram of an object recommendation model training device implemented based on a computer system according to an embodiment of the present specification.
图12示出了根据本说明书的实施例的基于计算机系统实现的对象推荐装置的示例示意图。FIG. 12 shows an example schematic diagram of an object recommendation device implemented based on a computer system according to an embodiment of the present specification.
具体实施方式DETAILED DESCRIPTION
现在将参考示例实施方式讨论本文描述的主题。应该理解,讨论这些实施方式只是为了使得本领域技术人员能够更好地理解从而实现本文描述的主题,并非是对权利要求书中所阐述的保护范围、适用性或者示例的限制。可以在不脱离本说明书内容的保护范围的情况下,对所讨论的元素的功能和排列进行改变。各个示例可以根据需要,省略、替代或者添加各种过程或组件。例如,所描述的方法可以按照与所描述的顺序不同的顺序来执行,以及各个步骤可以被添加、省略或者组合。另外,相对一些示例所描述的特征在其它例子中也可以进行组合。The subject matter described herein will now be discussed with reference to example implementations. It should be understood that the discussion of these implementations is only to enable those skilled in the art to better understand and implement the subject matter described herein, and is not a limitation of the scope of protection, applicability or examples set forth in the claims. The functions and arrangements of the elements discussed can be changed without departing from the scope of protection of the contents of this specification. Various examples can omit, replace or add various processes or components as needed. For example, the described method can be performed in an order different from the described order, and various steps can be added, omitted or combined. In addition, the features described relative to some examples can also be combined in other examples.
如本文中使用的,术语“包括”及其变型表示开放的术语,含义是“包括但不限于”。术语“基于”表示“至少部分地基于”。术语“一个实施例”和“一实施例”表示“至少一个实施例”。术语“另一个实施例”表示“至少一个其他实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下面可以包括其他的定义,无论是明确的还是隐含的。除非上下文中明确地指明,否则一个术语的定义在整个说明书中是一致的。As used herein, the term "including" and its variations represent open terms, meaning "including but not limited to". The term "based on" means "based at least in part on". The terms "one embodiment" and "an embodiment" mean "at least one embodiment". The term "another embodiment" means "at least one other embodiment". The terms "first", "second", etc. may refer to different or the same objects. Other definitions may be included below, whether explicit or implicit. Unless the context clearly indicates otherwise, the definition of a term is consistent throughout the specification.
在向用户进行对象推荐时,通常会基于对象推荐模型确定推荐对象并推荐给用户。对象推荐模型通常可以基于序列行为进行模型建模或者基于解耦学习进行模型建模。然而,基于序列行为的建模方案通常仅仅基于用户历史行为来学习由用户兴趣单一主导的嵌入表征,而不会对潜在的各个行为意图进行区分。基于解耦学习的建模方案也难以显式地包含对象推荐时的比如用户从众、用户风险偏好等的用户意图。When recommending objects to users, the recommended objects are usually determined based on the object recommendation model and recommended to the users. Object recommendation models can usually be modeled based on sequential behavior or based on decoupled learning. However, modeling schemes based on sequential behavior usually only learn embedded representations dominated by user interests based on user historical behavior, without distinguishing between potential behavioral intentions. Modeling schemes based on decoupled learning also find it difficult to explicitly include user intentions such as user conformity and user risk preference when recommending objects.
在一些对象推荐应用场景下,例如,商品智能推荐场景、基金智能推荐场景等,用户在选择对象时,除了用户对所选择的对象感兴趣之外,该所选择的对象是否被众多用户选择以及该对象的风险是否匹配用户的风险偏好会影响用户对象选择,从而在进行对象推荐模型建模时,除了考虑用户兴趣之外,还需要考虑用户从众心理和用户风险偏好等因素。由此,上述基于序列行为的建模方案以及基于解耦学习的建模方案不适合应用于上述需要考虑用户从众心理和用户风险偏好的对象推荐场景。In some object recommendation application scenarios, such as commodity intelligent recommendation scenarios and fund intelligent recommendation scenarios, when users select objects, in addition to the user's interest in the selected object, whether the selected object is selected by many users and whether the risk of the object matches the user's risk preference will affect the user's object selection. Therefore, when modeling the object recommendation model, in addition to considering user interests, factors such as user conformity and user risk preference need to be considered. Therefore, the above-mentioned modeling scheme based on sequential behavior and the modeling scheme based on decoupled learning are not suitable for application in the above-mentioned object recommendation scenarios that need to consider user conformity and user risk preference.
鉴于此,本说明书的实施例提供一种对象推荐模型训练方案及基于该对象推荐模型的对象推荐方案。利用该对象推荐模型训练方案,通过将用户特征、目标对象和用户交互对象的对象特征提供给对象推荐模型的嵌入层得到用户特征的用户特征嵌入表征、目标对象和用户交互对象的对象特征嵌入表征,并经由对象推荐模型的解耦层从用户交互对象的对象特征嵌入表征中分别解耦出与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征;随后将所解耦出的用户兴趣嵌入表征和用户从众嵌入表征引入对象推荐模型训练中,由此可以基于用户兴趣和用户从众心理进行对象推荐模型建模,从而提升对象推荐模型的用户理解效果,使得所训练出的对象推荐模型适用于上述需要考虑用户兴趣和用户从众心理的对象推荐场景。In view of this, the embodiments of the present specification provide an object recommendation model training scheme and an object recommendation scheme based on the object recommendation model. Using the object recommendation model training scheme, the user feature embedding representation of the user feature, the object feature embedding representation of the target object and the user interaction object are obtained by providing the user feature, the target object and the user interaction object's object features to the embedding layer of the object recommendation model, and the user interest embedding representation and the user conformity embedding representation corresponding to the user interest and the user conformity are respectively decoupled from the object feature embedding representation of the user interaction object through the decoupling layer of the object recommendation model; then the decoupled user interest embedding representation and the user conformity embedding representation are introduced into the object recommendation model training, thereby modeling the object recommendation model based on the user interest and the user conformity, thereby improving the user understanding effect of the object recommendation model, so that the trained object recommendation model is suitable for the above-mentioned object recommendation scenario that needs to consider the user interest and the user conformity.
下面参照附图描述根据本说明书的实施例的对象推荐模型训练方法及对象推荐模型训练装置、推荐对象确定方法及推荐对象确定装置以及对象推荐系统。The following describes an object recommendation model training method and an object recommendation model training device, a recommended object determination method and a recommended object determination device, and an object recommendation system according to an embodiment of the present specification with reference to the accompanying drawings.
图1示出了根据本说明书的实施例的基于对象推荐模型的对象推荐系统100的方框示意图。FIG. 1 shows a block diagram of an object recommendation system 100 based on an object recommendation model according to an embodiment of the present specification.
如图1所示,对象推荐系统100包括交互对象获取装置110、对象推荐模型训练装置120、对象推荐模型存储装置130和对象推荐装置140。交互对象获取装置110、对象推荐模型训练装置120、对象推荐模型存储装置130和推荐对象装置140可以通过网络150相互通信。在一些实施例中,网络150可以是有线网络或无线网络中的任意一种或多种。网络150的示例可以包括但不限于电缆网络、光纤网络、电信网络、企业内部网络、互联网、局域网络(LAN)、广域网络(WAN)、无线局域网络(WLAN)、城域网(MAN)、公共交换电话网络(PSTN)、蓝牙网络、紫蜂网络(ZigBee)、近场通讯(NFC)、设备内总线、设备内线路等或其任意组合。在一些实施例中,交互对象获取装置110、对象推荐模型训练装置120、对象推荐模型存储装置130和对象推荐装置140中的部分或全部装置可以直接通信,而无需网络150。As shown in FIG1 , the object recommendation system 100 includes an interactive object acquisition device 110, an object recommendation model training device 120, an object recommendation model storage device 130, and an object recommendation device 140. The interactive object acquisition device 110, the object recommendation model training device 120, the object recommendation model storage device 130, and the object recommendation device 140 can communicate with each other through a network 150. In some embodiments, the network 150 can be any one or more of a wired network or a wireless network. Examples of the network 150 may include, but are not limited to, a cable network, an optical fiber network, a telecommunications network, an intranet, the Internet, a local area network (LAN), a wide area network (WAN), a wireless local area network (WLAN), a metropolitan area network (MAN), a public switched telephone network (PSTN), a Bluetooth network, a ZigBee network (ZigBee), a near field communication (NFC), an in-device bus, an in-device line, etc., or any combination thereof. In some embodiments, some or all of the interactive object acquisition device 110, the object recommendation model training device 120, the object recommendation model storage device 130, and the object recommendation device 140 can communicate directly without the network 150.
交互对象获取装置110用于获取用户交互对象。用户交互对象是指与用户之间具有历史交互行为的对象,即,用户先前交互过的对象。术语“交互行为”的示例例如可以包括但不限于:用户点击对象、用户查看对象、用户浏览对象、用户购买对象、用户咨询对象、用户操作对象等交互行为。术语“对象”可以指适合于向用户推荐的对象。对象的示例例如可以包括但不限于:商品、基金产品、比如健身方案/学习方案等的视频资料等。每个对象可以具有对象类型和对象特征。对象类型用于标识对象的类型属性,比如,在对象是商品时,对象类型可以包括普通商品、高端商品、奢侈商品、易碎商品、高更新商品等。在对象是基金产品时,对象类型可以包括股票型基金、债券型基金、期货型基金、股票/债券混合型基金等。对象类型可以具有用于标识对象风险的对象风险信息。例如,股票型基金、债券型基金、期货型基金、股票/债券混合型基金可以标识出不同的基金产品风险。对象特征可以指用于反映对象特性的特征,该对象特征可以使得对应的对象与其它对象区分开。在对象是基金产品时,对象特征可以包括基金公司,基金经理等。The interactive object acquisition device 110 is used to acquire user interactive objects. User interactive objects refer to objects that have historical interactive behaviors with users, that is, objects that users have previously interacted with. Examples of the term "interactive behavior" may include, but are not limited to, interactive behaviors such as users clicking on objects, users viewing objects, users browsing objects, users purchasing objects, users consulting objects, and users operating objects. The term "object" may refer to an object suitable for recommendation to users. Examples of objects may include, but are not limited to, commodities, fund products, video materials such as fitness programs/learning programs, etc. Each object may have an object type and an object feature. The object type is used to identify the type attribute of the object. For example, when the object is a commodity, the object type may include ordinary commodities, high-end commodities, luxury commodities, fragile commodities, high-renewal commodities, etc. When the object is a fund product, the object type may include stock funds, bond funds, futures funds, stock/bond hybrid funds, etc. The object type may have object risk information for identifying object risks. For example, stock funds, bond funds, futures funds, and stock/bond hybrid funds can identify different fund product risks. Object features may refer to features used to reflect the characteristics of an object, and the object features may distinguish the corresponding object from other objects. When the object is a fund product, the object features may include a fund company, a fund manager, and the like.
在一些实施例中,交互对象获取装置110可以通过监测用户的历史交互行为来收集用户交互对象。在一些实施例中,用户交互对象可以经由特定对象收集装置收集。交互对象装置110可以经由无线通信或有线通信方式从特定对象收集装置获取用户交互对象。In some embodiments, the interactive object acquisition device 110 can collect user interactive objects by monitoring the user's historical interactive behavior. In some embodiments, the user interactive objects can be collected via a specific object collection device. The interactive object device 110 can obtain user interactive objects from a specific object collection device via wireless communication or wired communication.
交互对象获取装置110所获取的用户交互对象可以提供给对象推荐模型训练装置120。对象推荐模型训练装置120可以使用用户交互对象以及目标对象来训练对象推荐模型。在进行对象推荐模型训练时,目标对象可以是预先选择的一个或多个的用于模型训练的对象样本,该对象样本具有针对特定用户(例如,用户u)的行为标签。例如,如果用户u与目标对象之间存在交互行为,则目标对象的标签值为1。如果用户u与目标对象之间不存在交互行为,则目标对象的标签值为0。对象推荐模型训练装置120的对象推荐模型训练过程将在下面参照附图详细描述。The user interaction object acquired by the interaction object acquisition device 110 can be provided to the object recommendation model training device 120. The object recommendation model training device 120 can use the user interaction object and the target object to train the object recommendation model. When performing object recommendation model training, the target object can be one or more pre-selected object samples for model training, and the object sample has a behavior label for a specific user (e.g., user u). For example, if there is an interaction behavior between user u and the target object, the label value of the target object is 1. If there is no interaction behavior between user u and the target object, the label value of the target object is 0. The object recommendation model training process of the object recommendation model training device 120 will be described in detail below with reference to the accompanying drawings.
对象推荐装置140可以基于所训练出的对象推荐模型来确定是否推荐目标对象。响应于确定出推荐目标对象,对象推荐装置140可以将目标对象推荐给用户。在一些实施例中,对象推荐模型训练装置120所训练出的对象推荐模型可以存储在对象推荐模型存储装置130中。在这种情况下,在对象推荐装置140进行对象推荐时,可以从对象推荐模型存储装置130获取对象推荐模型来进行对象推荐,或者与对象推荐模型存储装置130进行通信,以将对象推荐模型所需信息提供给对象推荐模型存储装置130中的对象推荐模型来进行对象推荐。在一些实施例中,对象推荐模型训练装置120所训练出的对象推荐模型可以存储在对象推荐装置140中。The object recommendation device 140 may determine whether to recommend the target object based on the trained object recommendation model. In response to determining to recommend the target object, the object recommendation device 140 may recommend the target object to the user. In some embodiments, the object recommendation model trained by the object recommendation model training device 120 may be stored in the object recommendation model storage device 130. In this case, when the object recommendation device 140 makes an object recommendation, the object recommendation model may be obtained from the object recommendation model storage device 130 to make an object recommendation, or the object recommendation model storage device 130 may be communicated with to provide the information required by the object recommendation model to the object recommendation model in the object recommendation model storage device 130 to make an object recommendation. In some embodiments, the object recommendation model trained by the object recommendation model training device 120 may be stored in the object recommendation device 140.
图2示出了根据本说明书的实施例的对象推荐模型200的示例示意图。如图2所示,对象推荐模型200可以包括嵌入层210、图神经网络层220、解耦层230、级联层240、融合层250、表征层260和预测层270。Fig. 2 shows an example schematic diagram of an
嵌入层210用于将输入的用户特征、目标对象的对象特征、用户交互对象的对象特征和用户交互对象的对象类型映射为表征空间中的对应嵌入表征。这里,用户交互对象可以包括一个或多个用户交互对象。例如,嵌入层210可以将输入的用户特征映射为表征空间中的用户特征嵌入表征。嵌入层210可以将输入的目标对象的对象特征映射为表征空间中的目标对象的对象特征嵌入表征。嵌入层210可以将输入的用户交互对象的对象特征映射为表征空间中的用户交互对象的对象特征嵌入表征。嵌入层210可以将输入的用户交互对象的对象类型映射为表征空间中的用户交互对象的对象类型嵌入表征。在一些实施例中,嵌入层210可以具有多个嵌入层,比如,嵌入层1到嵌入层N。每个嵌入层负责一种特征或信息的嵌入表征映射处理。例如,可以针对用户特征以及每个用户交互对象的对象类型,分别分配一个嵌入层来进行嵌入表征映射处理。The embedding layer 210 is used to map the input user features, the object features of the target object, the object features of the user interaction object, and the object type of the user interaction object to the corresponding embedded representation in the representation space. Here, the user interaction object may include one or more user interaction objects. For example, the embedding layer 210 can map the input user features to the user feature embedded representation in the representation space. The embedding layer 210 can map the object features of the input target object to the object feature embedded representation of the target object in the representation space. The embedding layer 210 can map the object features of the input user interaction object to the object feature embedded representation of the user interaction object in the representation space. The embedding layer 210 can map the object type of the input user interaction object to the object type embedded representation of the user interaction object in the representation space. In some embodiments, the embedding layer 210 can have multiple embedding layers, such as embedding
图神经网络层220用于使用基于对象知识图谱来对目标对象和用户交互对象的对象特征嵌入表征进行图增强处理,由此得到目标对象和用户交互对象的经过图增强处理后的对象特征嵌入表征。图神经网络层220可以包括一个或多个图神经网络。例如,可以为每个对象分配一个图神经网络,该图神经网络被使用来基于对象知识图谱对该对象的对象特征嵌入表征进行图增强处理,由此得到该对象的经过图增强处理后的对象特征嵌入表征。图神经网络可以使用本领域的任何图神经网络来实现。图神经网络的示例例如可以包括但不限于图卷积网络(Graph Convolution Networks,GCN)、图注意力网络(Graph AttentionNetworks)、图自编码器(Graph Autoencoders)、图生成网络(Graph GenerativeNetworks)和图时空网络(Graph Spatial-temporal Networks)等。The graph neural network layer 220 is used to perform graph enhancement processing on the object feature embedding representation of the target object and the user interaction object based on the object knowledge graph, thereby obtaining the object feature embedding representation of the target object and the user interaction object after the graph enhancement processing. The graph neural network layer 220 may include one or more graph neural networks. For example, a graph neural network can be assigned to each object, and the graph neural network is used to perform graph enhancement processing on the object feature embedding representation of the object based on the object knowledge graph, thereby obtaining the object feature embedding representation of the object after the graph enhancement processing. The graph neural network can be implemented using any graph neural network in the art. Examples of graph neural networks may include, for example, but are not limited to, graph convolution networks (Graph Convolution Networks, GCN), graph attention networks (Graph Attention Networks), graph autoencoders (Graph Autoencoders), graph generative networks (Graph Generative Networks) and graph spatial-temporal networks (Graph Spatial-temporal Networks), etc.
在一些实施例中,对象知识图谱可以基于推荐类型对象与关联类型对象之间的关系创建。推荐类型对象是指与目标对象具有相同类型的对象。关联类型对象是指与推荐类型对象发生关联关系的对象。例如,在对象是基金产品时,关联类型对象可以包括基金经理、基金公司、基金所属行业、重仓股票、大盘指数等。在进行知识图谱创建时,可以基于基金产品->基金经理,基金产品->基金公司,基金产品->基金所属行业,基金产品->重仓股票,基金产品->大盘指数这五种关系来创建基金知识图谱中的各种节点和边关系,由此构建出所有基金产品之间的关联关系。使用图神经网络来基于对象知识图谱进行图卷积操作,可以利用对象知识图谱来为给定对象引入相似对象以增强该给定对象的图表征。In some embodiments, an object knowledge graph can be created based on the relationship between a recommendation type object and an associated type object. A recommendation type object refers to an object of the same type as a target object. An associated type object refers to an object that has an associated relationship with a recommendation type object. For example, when the object is a fund product, the associated type object may include a fund manager, a fund company, the industry to which the fund belongs, heavily weighted stocks, a market index, and the like. When creating a knowledge graph, various nodes and edge relationships in the fund knowledge graph can be created based on the five relationships of fund product->fund manager, fund product->fund company, fund product->fund industry, fund product->heavy weighted stocks, and fund product->market index, thereby constructing the association relationship between all fund products. Using a graph neural network to perform graph convolution operations based on an object knowledge graph, the object knowledge graph can be used to introduce similar objects for a given object to enhance the graph representation of the given object.
经由图神经网络层220进行图增强处理后的用户交互对象的对象特征嵌入表征被提供给解耦层230。解耦层230从用户交互对象的对象特征嵌入表征中分别解耦出与用户兴趣、用户从众心理和用户风险偏好对应的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。在一些实施例中,解耦层230可以被实现为自注意力(self-attention)网络。The object feature embedding representation of the user interaction object after graph enhancement processing by the graph neural network layer 220 is provided to the decoupling layer 230. The decoupling layer 230 decouples the user interest embedding representation, user conformity embedding representation and user risk preference embedding representation corresponding to the user interest, user conformity and user risk preference from the object feature embedding representation of the user interaction object. In some embodiments, the decoupling layer 230 can be implemented as a self-attention network.
可选地,在用户交互对象包括多个用户交互对象时,对象推荐模型200还可以包括级联(concact)层240。解耦层230所解耦出的与用户兴趣、用户从众心理和用户风险偏好对应的特征嵌入表征分量被分别提供给级联层240来进行级联,由此得到用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。要说明的是,在一些实施例中,级联层240可以集成在解耦层230中。要说明的是,术语“级联”可以与拼接互换使用。Optionally, when the user interaction object includes multiple user interaction objects, the
经由解耦层230/级联层240级联得到的用户兴趣嵌入表征和用户从众嵌入表征以及嵌入层210所输出的用户特征嵌入表征被提供给融合层250。融合层250将用户特征嵌入表征分别与用户兴趣嵌入表征和用户从众嵌入表征融合,并将所得到的各个融合结果提供给表征层260。这里,融合层250的目的在于将用户特征融入用户兴趣嵌入表征和用户从众嵌入表征中,由此使得融合结果可以反映出结合有用户特征的用户兴趣嵌入表征和用户从众嵌入表征。在一些实施例中,融合层250可以被实现为级联层或者其它可适用的融合技术。The user interest embedding representation and the user conformity embedding representation obtained by cascading the decoupling layer 230/the cascading layer 240 and the user feature embedding representation output by the embedding layer 210 are provided to the fusion layer 250. The fusion layer 250 fuses the user feature embedding representation with the user interest embedding representation and the user conformity embedding representation, respectively, and provides the obtained fusion results to the representation layer 260. Here, the purpose of the fusion layer 250 is to integrate the user features into the user interest embedding representation and the user conformity embedding representation, so that the fusion result can reflect the user interest embedding representation and the user conformity embedding representation combined with the user features. In some embodiments, the fusion layer 250 can be implemented as a cascade layer or other applicable fusion technology.
表征层260用于基于用户特征嵌入表征与用户兴趣嵌入表征的融合结果得到用户兴趣表征,以及基于用户特征嵌入表征与用户从众嵌入表征的融合结果得到用户从众表征。此外,表征层260还接收嵌入层210所提供的用户交互对象的对象类型嵌入表征,并根据用户交互对象的对象类型嵌入表征得到用户风险偏好表征。此外,表征层260还接收图神经网络层220所提供的目标对象的对象特征嵌入表征,并基于目标对象的对象特征嵌入表征得到目标对象表征。在一些实施例中,表征层260可以被实现为例如前馈网络(Feedforwardnetwork,FFN)或前馈神经网络(Feedforward neural network,FFNN)等。The representation layer 260 is used to obtain the user interest representation based on the fusion result of the user feature embedding representation and the user interest embedding representation, and to obtain the user conformity representation based on the fusion result of the user feature embedding representation and the user conformity embedding representation. In addition, the representation layer 260 also receives the object type embedding representation of the user interaction object provided by the embedding layer 210, and obtains the user risk preference representation based on the object type embedding representation of the user interaction object. In addition, the representation layer 260 also receives the object feature embedding representation of the target object provided by the graph neural network layer 220, and obtains the target object representation based on the object feature embedding representation of the target object. In some embodiments, the representation layer 260 can be implemented as, for example, a feedforward network (FFN) or a feedforward neural network (FFNN).
表征层260所得到的用户兴趣表征、用户从众表征以及目标对象表征被提供给预测层270。预测层270基于用户兴趣表征和目标对象表征预测用户兴趣预测结果,以及基于用户从众表征和目标对象表征预测用户从众预测结果,并根据用户兴趣预测结果和用户从众预测结果,预测目标对象是否是推荐对象。The user interest representation, user conformity representation, and target object representation obtained by the representation layer 260 are provided to the prediction layer 270. The prediction layer 270 predicts a user interest prediction result based on the user interest representation and the target object representation, and predicts a user conformity prediction result based on the user conformity representation and the target object representation, and predicts whether the target object is a recommended object based on the user interest prediction result and the user conformity prediction result.
要说明的是,以上示例仅仅是本公开的一个示例性实施例,所包括的特征并非均是本公开所必需的特征。作为示例,虽然在以上示例中包括图神经网络层220,但该特征仅是示例性的,而并非必需的。目标对象和用户交互对象可以不采用图的形式来进行表示,因而对象推荐模型可以不包括图神经网络层220。此外,类似地,虽然在以上示例中包括用户交互对象的对象类型和用户风险偏好表征,但这些特征也仅是示例性的,用于更好地提取用户从众嵌入表征,而并非必需的。在进行对象推荐模型建模时可以仅仅使用用户兴趣嵌入表征和用户从众嵌入表征,而不使用用户风险偏好表征,相应地也可以不使用用户交互对象的对象类型。It should be noted that the above example is only an exemplary embodiment of the present disclosure, and the included features are not all necessary features of the present disclosure. As an example, although the graph neural network layer 220 is included in the above example, this feature is only exemplary and not necessary. The target object and the user interaction object may not be represented in the form of a graph, so the object recommendation model may not include the graph neural network layer 220. In addition, similarly, although the object type and user risk preference representation of the user interaction object are included in the above example, these features are also only exemplary and are used to better extract the user conformity embedding representation, but are not necessary. When modeling the object recommendation model, only the user interest embedding representation and the user conformity embedding representation can be used without using the user risk preference representation, and accordingly, the object type of the user interaction object may not be used.
图3示出了根据本说明书的实施例的用于训练图2所示的对象推荐模型200的方法300的示例流程图。图3中示出的对象推荐模型训练过程是循环过程。Fig. 3 shows an example flow chart of a method 300 for training the
如图3所示,在每次循环过程中,在310,将用户特征、目标对象的对象特征、用户交互对象的对象特征和用户交互对象的对象类型分别提供给对象推荐模型的嵌入层,得到用户特征的用户特征嵌入表征、目标对象的对象特征嵌入表征、用户交互对象的对象特征嵌入表征和用户交互对象的对象类型嵌入表征。在本说明书中,用户交互对象和目标对象属于同一类型对象,并且对象类型具有对象风险信息。例如,在对象是基金产品时,用户交互对象为用户交互基金产品,以及目标对象为目标基金产品。对象类型为基金产品类型,例如,股票型基金、债券型基金、期货型基金等。通过该基金产品类型,可以反映出该基金产品的风险级别,例如,低风险、中风险、高风险等。As shown in Figure 3, in each loop process, at 310, the user features, the object features of the target object, the object features of the user interaction object, and the object type of the user interaction object are respectively provided to the embedding layer of the object recommendation model to obtain the user feature embedding representation of the user features, the object feature embedding representation of the target object, the object feature embedding representation of the user interaction object, and the object type embedding representation of the user interaction object. In this specification, the user interaction object and the target object belong to the same type of object, and the object type has object risk information. For example, when the object is a fund product, the user interaction object is a user interaction fund product, and the target object is a target fund product. The object type is a fund product type, for example, a stock fund, a bond fund, a futures fund, etc. Through the fund product type, the risk level of the fund product can be reflected, for example, low risk, medium risk, high risk, etc.
在320,将目标对象和用户交互对象的对象特征嵌入表征分别提供给对象推荐模型的图神经网络来基于对象知识图谱进行图增强处理,得到目标对象和用户交互对象的经过图增强处理后的对象特征嵌入表征。At 320, the object feature embedding representations of the target object and the user interaction object are respectively provided to the graph neural network of the object recommendation model to perform graph enhancement processing based on the object knowledge graph, so as to obtain the object feature embedding representations of the target object and the user interaction object after graph enhancement processing.
在330,经由对象推荐模型的解耦层,从用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。At 330, via the decoupling layer of the object recommendation model, the user interest embedding representation, the user conformity embedding representation and the user risk preference embedding representation corresponding to the user interest, the user conformity mentality and the user risk preference are decoupled from the object feature embedding representation after graph enhancement processing of the user interaction object.
在一些实施例中,可以经由对象推荐模型的解耦层基于无监督机制,从用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。In some embodiments, the decoupling layer of the object recommendation model can be used to decouple the user interest embedding representation, user conformity embedding representation and user risk preference embedding representation corresponding to user interests, user conformity and user risk preferences respectively from the object feature embedding representation of the user interaction object after graph enhancement based on an unsupervised mechanism.
在一些实施例中,用户交互对象可以包括多个用户交互对象。在这种情况下,可以经由对象推荐模型的解耦层,从各个用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的特征嵌入表征分量并进行级联,得到用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。In some embodiments, the user interaction object may include multiple user interaction objects. In this case, the feature embedding representation components corresponding to user interests, user conformity and user risk preferences can be decoupled from the object feature embedding representations of each user interaction object after graph enhancement through the decoupling layer of the object recommendation model and cascaded to obtain the user interest embedding representation, the user conformity embedding representation and the user risk preference embedding representation.
例如,在一些实施例中,解耦层可以被实现为自注意力(self-attention)网络。在这种情况下,可以将各个用户交互对象的经过图增强处理后的对象特征嵌入表征分别提供给自注意力网络,以从各个用户交互对象的经过图增强处理后的对象特征嵌入表征中分别解耦出与用户兴趣、用户从众心理和用户风险偏好对应的特征嵌入表征分量。For example, in some embodiments, the decoupling layer can be implemented as a self-attention network. In this case, the object feature embedding representations of each user interaction object after graph enhancement processing can be provided to the self-attention network respectively, so as to decouple the feature embedding representation components corresponding to the user interest, the user herd mentality and the user risk preference from the object feature embedding representations of each user interaction object after graph enhancement processing.
例如,假设使用图神经网络来基于对象知识图谱对给定对象的对象特征进行图卷积操作得到图增强处理后的对象特征嵌入表示集合为H(L)∈R|ε|×d,其中|ε|为对象数目,d为图表征大小。给定用户u的历史交互序列为S={f1,…,f|S|},可以从图增强处理后的对象特征嵌入表示集合H(L)中检索出对象行为序列表征针对该对象行为序列表征可以使用自注意力机制来抽取用户兴趣,用户从众心理和用户风险偏好的向量集合{ωI,ωC,ωR}进行下述操作,由此得到解耦化的对象特征嵌入表征:For example, suppose a graph neural network is used to perform graph convolution operations on the object features of a given object based on the object knowledge graph to obtain the object feature embedding representation set after graph enhancement processing as H (L) ∈R |ε|×d , where |ε| is the number of objects and d is the size of the graph representation. Given the historical interaction sequence of user u as S = {f 1 ,…,f |S| }, the object behavior sequence representation can be retrieved from the object feature embedding representation set H (L) after graph enhancement processing Characterize the behavior sequence of the object The self-attention mechanism can be used to extract the vector set {ω I ,ω C ,ω R } of user interests, user conformity and user risk preference, and perform the following operations to obtain the decoupled object feature embedding representation:
其中,σ(·)为非线性函数,f(·)为Softmax函数。Among them, σ(·) is a nonlinear function and f(·) is a Softmax function.
通过上述自注意力操作,可以基于无监督机制得到针对用户u的多粒度解耦化的对象特征嵌入表示 Through the above self-attention operation, we can obtain the multi-granularity decoupled object feature embedding representation for user u based on the unsupervised mechanism:
在340,将用户特征嵌入表征分别与用户兴趣嵌入表征和用户从众嵌入表征融合,并将所得到的两个融合结果分别提供给对象推荐模型的表征层得到用户兴趣表征和用户从众表征。At 340, the user feature embedding representation is fused with the user interest embedding representation and the user conformity embedding representation respectively, and the two fusion results are provided to the representation layer of the object recommendation model to obtain the user interest representation and the user conformity representation.
在350,将目标对象的对象特征嵌入表征提供给对象推荐模型的表征层得到目标对象表征,以及将用户交互对象的对象类型嵌入表征提供给对象推荐模型的表征层得到用户风险偏好表征。At 350 , the object feature embedding representation of the target object is provided to the representation layer of the object recommendation model to obtain the target object representation, and the object type embedding representation of the user interaction object is provided to the representation layer of the object recommendation model to obtain the user risk preference representation.
在360,经由对象推荐模型的预测层,基于用户兴趣表征与目标对象表征预测用户兴趣预测结果,以及基于用户从众表征与目标对象表征预测用户从众预测结果。用户兴趣预测结果是指关于用户兴趣的预测结果,以及用户从众预测结果是关于用户从众的预测结果。即,通过计算用户兴趣表征与目标对象表征的相似度来进行打分得到关于用户兴趣的预测结果,以及通过计算用户从众表征与目标对象表征的相似度来进行打分得到关于用户从众的预测结果。At 360, a prediction layer of the object recommendation model predicts a user interest prediction result based on the user interest representation and the target object representation, and predicts a user conformity prediction result based on the user conformity representation and the target object representation. The user interest prediction result refers to a prediction result about the user interest, and the user conformity prediction result is a prediction result about the user conformity. That is, the prediction result about the user interest is obtained by calculating the similarity between the user interest representation and the target object representation, and the prediction result about the user conformity is obtained by calculating the similarity between the user conformity representation and the target object representation.
在一些实施例中,用户兴趣预测结果可以基于 来确定出,其中,σ(·)为sigmoid函数,FFNI(·)为与用户兴趣表征对应的前向传播网络,为用户特征嵌入表征,为用户兴趣嵌入表征,||为级联操作,(·)T为转置操作,以及xf为目标对象表征。In some embodiments, the user interest prediction result Can be based on To determine, where σ(·) is the sigmoid function, FFNI (·) is the forward propagation network corresponding to the user interest representation, Embedding representation for user features, is the user interest embedding representation, || is the concatenation operation, (·) T is the transposition operation, and x f is the target object representation.
在一些实施例中,用户从众预测结果可以基于 来确定出,其中,σ(·)为sigmoid函数,FFNC(·)为与用户从众表征对应的前向传播网络,为用户特征嵌入表征,为用户从众嵌入表征,||为级联操作,(·)T为转置操作,以及xf为目标对象表征。In some embodiments, the user follows the crowd to predict the results Can be based on To determine, where σ(·) is the sigmoid function, FFN C (·) is the forward propagation network corresponding to the user's conformity representation, Embedding representation for user features, is the user’s crowd embedding representation, || is the concatenation operation, (·) T is the transposition operation, and x f is the target object representation.
在370,判断对象推荐模型的模型训练过程是否结束。例如,可以通过判断是否满足模型训练结束条件来判断模型训练过程是否结束。模型训练结束条件的示例例如可以包括但不限于:达到预设训练轮数,或者所训练出的模型精度达到预定精度等。在模型训练结束条件为所训练出的模型精度达到预定精度时,可以基于用户兴趣预测结果和用户从众预测结果来确定针对目标对象的预测结果,并基于针对目标对象的预测结果来确定所训练出的模型精度。At 370, it is determined whether the model training process of the object recommendation model is completed. For example, it is possible to determine whether the model training process is completed by determining whether a model training completion condition is met. Examples of model training completion conditions may include, but are not limited to: reaching a preset number of training rounds, or the trained model accuracy reaching a predetermined accuracy, etc. When the model training completion condition is that the trained model accuracy reaches a predetermined accuracy, the prediction result for the target object may be determined based on the user interest prediction result and the user conformity prediction result, and the trained model accuracy may be determined based on the prediction result for the target object.
如果满足训练结束条件,则模型训练过程结束。如果不满足训练结束条件,则在380,基于用户兴趣预测结果、用户从众预测结果、风险偏好嵌入表征和用户风险偏好表征确定总损失函数。If the training end condition is met, the model training process ends. If the training end condition is not met, at 380, a total loss function is determined based on the user interest prediction result, the user conformity prediction result, the risk preference embedding representation, and the user risk preference representation.
图4示出了根据本说明书的实施例的总损失函数确定过程400的示例流程图。FIG. 4 shows an example flow chart of a total loss
如图4所示,在410,基于用户兴趣预测结果确定用户兴趣损失项,以及在420,基于用户从众预测结果确定用户从众损失项。As shown in FIG. 4 , at 410 , a user interest loss term is determined based on the user interest prediction result, and at 420 , a user conformity loss term is determined based on the user conformity prediction result.
在一些实施例中,目标对象可以具有基于对象交互历史行为中的交互次数确定的对象热门度。In some embodiments, the target object may have an object popularity determined based on the number of interactions in the object's interaction history behavior.
在一些实施例中,可以将目标对象f的热门度定义如下:In some embodiments, the popularity of the target object f may be defined as follows:
其中,γf为目标对象f的热门度,Cf为目标对象f在历史数据中的交互次数,Cmax为对象集中的各个对象在历史数据中的最大交互次数,以及Cmin为对象集的各个对象在历史数据中的最小交互次数。Among them, γ f is the popularity of the target object f, C f is the number of interactions of the target object f in the historical data, C max is the maximum number of interactions of each object in the object set in the historical data, and C min is the minimum number of interactions of each object in the object set in the historical data.
在这种情况下,用户兴趣损失项可以基于用户兴趣预测结果和目标对象的对象热门度确定,以及用户从众损失项可以基于用户从众预测结果和目标对象的对象热门度确定。In this case, the user interest loss term may be determined based on the user interest prediction result and the object popularity of the target object, and the user conformity loss term may be determined based on the user conformity prediction result and the object popularity of the target object.
例如,用户兴趣损失项LI可以被表示为:其中,为用户兴趣预测结果,为用户u对目标对象f的行为标签,以及CE(·)为交叉熵损失函数。For example, the user interest loss term LI can be expressed as: in, Predict results for user interests, is the behavior label of user u on target object f, and CE(·) is the cross entropy loss function.
用户从众损失项LC可以被表示为:其中,为用户从众预测结果,为用户u对目标对象f的行为标签,以及CE(·)为交叉熵损失函数。The user conformity loss term LC can be expressed as: in, Predict results for users to follow the crowd, is the behavior label of user u on target object f, and CE(·) is the cross entropy loss function.
在430,基于风险偏好嵌入表征和用户风险偏好表征确定用户风险偏好损失项。At 430 , a user risk preference loss term is determined based on the risk preference embedding representation and the user risk preference representation.
鉴于对象类型可以很好地刻画对象的风险级别,可以借助历史行为中的对象类型序列中抽取出有用的先验信息来对用户风险偏好进行建模。例如,假设给定用户u的历史基金类型序列为可以从中抽取出特定表示并将其作为风险偏好的自监督信息,该特定表示可以定义如下:Given that object types can well characterize the risk level of an object, useful prior information can be extracted from the object type sequence in historical behavior to model the user's risk preference. For example, assuming that the historical fund type sequence of a given user u is A specific representation can be extracted from it and used as self-supervisory information for risk preference. The specific representation can be defined as follows:
其中,Φ(·)为Embedding操作符,g(·)为Pooling函数(例如,可以定义为Concact操作),FFN(·)为前向传播网络。Among them, Φ(·) is the Embedding operator, g(·) is the Pooling function (for example, it can be defined as the Concact operation), and FFN(·) is the forward propagation network.
基于上述定义,可以将用户风险偏好损失项LR定义为如下的对比损失函数,作为自监督损失函数:Based on the above definition, the user risk preference loss term LR can be defined as the following contrast loss function as a self-supervised loss function:
其中,B为特定批次的数据,负样本可以基于带噪声的分布中采样得到,以及τ为温度参数。在一些实施例中,分布被实现为均匀分布。在其它实施例中,分布被也可以采用其他的有偏分布。温度参数τ可以用来控制施加在不同负样本上的惩罚强度。Among them, B is a specific batch of data, and negative samples can be based on the distribution of noise In some embodiments, the distribution is implemented as a uniform distribution. In other embodiments, the distribution Other biased distributions can also be used. The temperature parameter τ can be used to control the intensity of the penalty imposed on different negative samples.
在440,根据用户兴趣损失项、用户从众损失项和用户风险偏好损失项,确定总损失函数。At 440 , a total loss function is determined based on the user interest loss term, the user conformity loss term, and the user risk preference loss term.
在一些实施例中,可以将用户兴趣损失项、用户从众损失项和用户风险偏好损失项来得到总损失函数,即,L=LI+LC+LR。在一些实施例中,用户风险偏好损失项LR可以具有加权值ε,该加权值ε用于定义用户风险偏好损失项对总损失函数的贡献度。在这种情况下,可以根据用户兴趣损失项、用户从众损失项和经过加权后的用户风险偏好损失项,确定总损失函数。例如,L=LI+LC+ε·LR。ε为大于0的常数。该常数ε用于控制风险偏好项LR对总损失函数的贡献度,而用户兴趣项LI和用户从众心理项LC对总损失函数的贡献度可以由对象热门度参数γf进行自适应调整。In some embodiments, the user interest loss term, the user conformity loss term, and the user risk preference loss term may be used to obtain a total loss function, that is, L= LI + LC + LR . In some embodiments, the user risk preference loss term LR may have a weighted value ε, which is used to define the contribution of the user risk preference loss term to the total loss function. In this case, the total loss function may be determined based on the user interest loss term, the user conformity loss term, and the weighted user risk preference loss term. For example, L= LI + LC +ε· LR . ε is a constant greater than 0. The constant ε is used to control the contribution of the risk preference term LR to the total loss function, while the contribution of the user interest term LI and the user conformity psychology term LC to the total loss function may be adaptively adjusted by the object popularity parameter γf .
回到图3,在如上确定出总损失函数后,在390,根据总损失函数调整对象推荐模型的模型参数。例如,调整对象推荐模型中的嵌入层、图神经网络层、表征层和预测层中的一层或多层的模型参数。随后,返回到310,执行下一循环过程。如此循环,直到模型训练过程结束。Returning to FIG. 3 , after the total loss function is determined as above, at 390 , the model parameters of the object recommendation model are adjusted according to the total loss function. For example, the model parameters of one or more layers of the embedding layer, the graph neural network layer, the representation layer, and the prediction layer in the object recommendation model are adjusted. Then, the process returns to 310 to execute the next loop process. This cycle is repeated until the model training process is completed.
要说明的是,图3和图4示出的仅仅是图2所示的对象推荐模型200的训练过程的例示实施例。如上关于图2所述,图2的对象推荐模型200的部分特征并非本公开所必需的。类似地,图3和图4示出的训练过程的各个步骤也并未均是本公开所必需的。It should be noted that FIG. 3 and FIG. 4 only illustrate an exemplary embodiment of the training process of the
作为示例,在图4的示例中,使用用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征三者来进行对象推荐模型建模。在一些实施例中,可以仅仅使用用户兴趣嵌入表征和用户从众嵌入表征二者来进行对象推荐模型建模。在这种情况下,可以从图3和图4例示的训练过程中修改与用户风险偏好嵌入表征相关的操作。例如,在310中,无需将用户交互对象的对象类型提供给对象推荐模型的嵌入层,得到用户交互对象的对象类型嵌入表征。由此,在330中,经由对象推荐模型的解耦层,从用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征。在350,仅仅将目标对象的对象特征嵌入表征提供给对象推荐模型的表征层得到目标对象表征。此外,在380中,可以基于用户兴趣预测结果和用户从众预测结果确定总损失函数。具体地,基于用户兴趣预测结果确定用户兴趣损失项,以及基于用户从众预测结果确定用户从众损失项。然后,根据用户兴趣损失项和用户从众损失项,确定总损失函数。As an example, in the example of FIG. 4 , the object recommendation model is modeled using the user interest embedding representation, the user conformity embedding representation, and the user risk preference embedding representation. In some embodiments, only the user interest embedding representation and the user conformity embedding representation can be used to model the object recommendation model. In this case, the operation related to the user risk preference embedding representation can be modified from the training process illustrated in FIGS. 3 and 4 . For example, in 310 , the object type of the user interaction object does not need to be provided to the embedding layer of the object recommendation model to obtain the object type embedding representation of the user interaction object. Thus, in 330 , the user interest embedding representation and the user conformity embedding representation corresponding to the user interest and the user conformity psychology are decoupled from the object feature embedding representation of the user interaction object after the graph enhancement processing via the decoupling layer of the object recommendation model. In 350 , only the object feature embedding representation of the target object is provided to the representation layer of the object recommendation model to obtain the target object representation. In addition, in 380 , the total loss function can be determined based on the user interest prediction result and the user conformity prediction result. Specifically, the user interest loss term is determined based on the user interest prediction result, and the user conformity loss term is determined based on the user conformity prediction result. Then, the total loss function is determined based on the user interest loss term and the user conformity loss term.
在一些实施例中,对象推荐模型可以不包括图神经网络,从而在进行对象推荐模型训练时,不对目标对象和用户交互对象的对象特征嵌入表征执行基于对象知识图谱的图增强处理。在一些实施例中,可以仅仅使用用户兴趣嵌入表征和用户从众嵌入表征二者来进行对象推荐模型建模,同时不对目标对象和用户交互对象的对象特征嵌入表征执行基于对象知识图谱的图增强处理。In some embodiments, the object recommendation model may not include a graph neural network, so that when training the object recommendation model, the object feature embedding representation of the target object and the user interaction object does not perform graph enhancement processing based on the object knowledge graph. In some embodiments, only the user interest embedding representation and the user conformity embedding representation may be used to model the object recommendation model, and the object feature embedding representation of the target object and the user interaction object does not perform graph enhancement processing based on the object knowledge graph.
如上参照图1到图4描述了根据本说明书的实施例的对象推荐模型训练过程。下面以商品推荐为例来说明上述对象推荐模型训练过程。The object recommendation model training process according to the embodiment of the present specification is described above with reference to Figures 1 to 4. The object recommendation model training process is described below using commodity recommendation as an example.
图5示出了根据本说明书的实施例的对象推荐模型训练过程的示例示意图。在图5的示例中,对象为商品,交互对象包括交互商品1到交互商品n。Fig. 5 shows an example schematic diagram of an object recommendation model training process according to an embodiment of the present specification. In the example of Fig. 5, the object is a commodity, and the interactive objects include
用户特征被提供给嵌入层,得到用户特征嵌入表征交互商品1的对象特征被提供给嵌入层得到交互商品1的对象特征嵌入表征,并对所得到的对象特征嵌入表征经由图神经网络使用商品知识图谱进行图增强处理,由此得到交互商品1的经过图增强处理后的对象特征嵌入表征。交互商品2的对象特征被提供给嵌入层得到交互商品2的对象特征嵌入表征,并对所得到的对象特征嵌入表征经由图神经网络使用商品知识图谱进行图增强处理,由此得到交互商品2的经过图增强处理后的对象特征嵌入表征,以及交互商品n的对象特征被提供给嵌入层得到交互商品n的对象特征嵌入表征,并对所得到的对象特征嵌入表征经由图神经网络使用商品知识图谱进行图增强处理后得到交互商品n的经过图增强处理后的对象特征嵌入表征。目标商品的对象特征被提供给嵌入层得到交互商品的对象特征嵌入表征,并对所得到的对象特征嵌入表征经由图神经网络使用商品知识图谱进行图增强处理后得到目标商品的经过图增强处理后的对象特征嵌入表征xf。The user features are provided to the embedding layer to obtain the user feature embedding representation The object features of
交互商品1、交互商品2到交互商品n的对象类型被分别提供给嵌入层,得到交互商品1的对象类型嵌入表征,交互商品2的对象类型嵌入表征以及交互商品n的对象类型嵌入表征。随后,交互商品1的对象类型嵌入表征,交互商品2的对象类型嵌入表征以及交互商品n的对象类型嵌入表征被提供给前馈网络(FFN),得到用户风险偏好表征目标对象的经过图增强处理后的对象特征嵌入表征被提供给对象推荐模型的表征层得到目标对象表征。The object types of
从交互商品1的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的对象特征嵌入表征分量。从交互商品2的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的对象特征嵌入表征分量。从交互商品n的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的对象特征嵌入表征分量。然后,将从交互商品1到交互商品n的经过图增强处理后的对象特征嵌入表征中解耦出的与用户兴趣对应的对象特征嵌入表征分量级联,得到用户兴趣嵌入表征将从交互商品1到交互商品n的经过图增强处理后的对象特征嵌入表征中解耦出的与用户从众心理对应的对象特征嵌入表征分量级联,得到用户从众嵌入表征将从交互商品1到交互商品n的经过图增强处理后的对象特征嵌入表征中解耦出的与用户风险偏好对应的对象特征嵌入表征分量级联,得到用户风险偏好嵌入表征 The object feature embedding representation components corresponding to user interests, user herd mentality, and user risk preference are decoupled from the object feature embedding representation of
随后,将用户兴趣嵌入表征与用户特征嵌入表征融合(级联),并将融合结果提供给前馈网络得到用户兴趣表征。将用户从众嵌入表征与用户特征嵌入表征融合,并将融合结果提供给前馈网络得到用户从众表征。然后,基于用户兴趣表征和目标对象表征得到用户兴趣预测结果以及基于用户从众表征和目标对象表征得到用户从众预测结果 Then, user interests are embedded into representation Fuse (cascade) with the user feature embedding representation, and provide the fusion result to the feedforward network to obtain the user interest representation. The user feature embedding representation is fused and the fusion result is provided to the feedforward network to obtain the user conformity representation. Then, the user interest prediction result is obtained based on the user interest representation and the target object representation. And the user conformity prediction result is obtained based on the user conformity representation and the target object representation
在确定出用户兴趣预测结果和用户从众预测结果后,基于用户兴趣预测结果和用户u对目标商品f的行为标签确定用户兴趣损失项LI,以及基于用户从众预测结果和用户u对目标商品f的行为标签确定用户从众损失项LC。此外,还基于用户风险偏好嵌入表征和用户风险偏好表征确定用户风险偏好损失项LR。After determining the user interest prediction results and user herd prediction results After that, based on the user interest prediction results and the behavior label of user u on the target product f Determine the user interest loss term LI and the prediction result based on user conformity and user u's behavior label for target product f Determine the user's herd loss term LC . In addition, embedding representation based on user risk preference and user risk preference characterization Determine the user's risk preference loss term LR .
随后,基于用户兴趣损失项LI、用户从众损失项LC和用户风险偏好损失项LR确定总损失函数L,并根据总损失函数L调整对象推荐模型的模型参数。Subsequently, a total loss function L is determined based on the user interest loss term LI , the user conformity loss term LC, and the user risk preference loss term LR , and the model parameters of the object recommendation model are adjusted according to the total loss function L.
利用上述对象推荐模型训练方案,通过将用户特征、目标对象和用户交互对象的对象特征提供给对象推荐模型的嵌入层得到用户特征的用户特征嵌入表征、目标对象和用户交互对象的对象特征嵌入表征,并经由对象推荐模型的解耦层从用户交互对象的对象特征嵌入表征中分别解耦出与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征;随后将所解耦出的用户兴趣嵌入表征和用户从众嵌入表征引入对象推荐模型训练中,由此可以基于用户兴趣和用户从众心理进行对象推荐模型建模,从而提升对象推荐模型的用户理解效果,使得所训练出的对象推荐模型适用于上述需要考虑用户兴趣和用户从众心理的对象推荐场景。By utilizing the above-mentioned object recommendation model training scheme, user feature embedding representations of user features and object feature embedding representations of target objects and user interaction objects are obtained by providing user features, target objects, and user interaction objects to the embedding layer of the object recommendation model, and the user interest embedding representations and user conformity embedding representations corresponding to user interests and user conformity are respectively decoupled from the object feature embedding representations of user interaction objects through the decoupling layer of the object recommendation model; the decoupled user interest embedding representations and user conformity embedding representations are then introduced into the object recommendation model training, thereby modeling the object recommendation model based on user interests and user conformity, thereby improving the user understanding effect of the object recommendation model, and making the trained object recommendation model suitable for the above-mentioned object recommendation scenarios that require consideration of user interests and user conformity.
利用上述对象推荐模型训练方案,通过在对象推荐模型中部署图神经网络,并且使用图神经网络来基于对象知识图谱对目标对象和用户交互对象的对象特征进行图增强处理来得到目标对象和用户交互对象的经过图增强处理后的对象特征嵌入表征,从而可以在目标对象和用户交互对象的对象特征嵌入表征中引入对象知识图谱中的关联对象的特征影响,由此提升目标对象和用户交互对象的对象特征嵌入表征的准确性。Utilizing the above-mentioned object recommendation model training scheme, by deploying a graph neural network in the object recommendation model, and using the graph neural network to perform graph enhancement processing on the object features of the target object and the user interaction object based on the object knowledge graph, the object feature embedding representation of the target object and the user interaction object after graph enhancement processing is obtained, so that the feature influence of the associated objects in the object knowledge graph can be introduced into the object feature embedding representation of the target object and the user interaction object, thereby improving the accuracy of the object feature embedding representation of the target object and the user interaction object.
利用上述对象推荐模型训练方案,通过在对象推荐模型中部署图神经网络,并且使用图神经网络来基于对象知识图谱对目标对象和用户交互对象的对象特征进行图增强处理来得到目标对象和用户交互对象的经过图增强处理后的对象特征嵌入表征,随后从用户交互对象的对象特征嵌入表征中分别解耦出与用户兴趣、用户从众心理和用户风险偏好对应的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征;随后将所解耦出的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征引入对象推荐模型训练中,由此可以基于用户兴趣、用户从众心理和用户风险偏好进行对象推荐模型建模,从而提升对象推荐模型的用户理解效果,使得所训练出的对象推荐模型适用于上述需要考虑用户从众心理和用户风险偏好的对象推荐场景。Utilizing the above-mentioned object recommendation model training scheme, a graph neural network is deployed in the object recommendation model, and the graph neural network is used to perform graph enhancement processing on the object features of the target object and the user interaction object based on the object knowledge graph to obtain the object feature embedding representations of the target object and the user interaction object after graph enhancement processing, and then the user interest embedding representation, user conformity embedding representation and user risk preference embedding representation corresponding to the user interest, user herd mentality and user risk preference are respectively decoupled from the object feature embedding representation of the user interaction object; and then the decoupled user interest embedding representation, user herd embedding representation and user risk preference embedding representation are introduced into the object recommendation model training, thereby modeling the object recommendation model based on user interest, user herd mentality and user risk preference, thereby improving the user understanding effect of the object recommendation model, so that the trained object recommendation model is suitable for the above-mentioned object recommendation scenario that needs to consider the user herd mentality and user risk preference.
利用上述对象推荐模型训练方案,通过将总损失函数设置为基于用户兴趣损失项、用户从众损失项以及用户风险偏好损失项确定出,可以进一步提升对象推荐模型的模型训练精度。By using the above-mentioned object recommendation model training scheme, the model training accuracy of the object recommendation model can be further improved by setting the total loss function to be determined based on the user interest loss term, the user conformity loss term and the user risk preference loss term.
利用上述对象推荐模型训练方案,通过设置对象热门度,可以自适应调整用户兴趣损失项和用户从众损失项对总损失函数的贡献度,由此提升对象推荐模型的应用场景适应度。By using the above-mentioned object recommendation model training scheme and setting the object popularity, the contribution of the user interest loss term and the user conformity loss term to the total loss function can be adaptively adjusted, thereby improving the application scenario adaptability of the object recommendation model.
利用上述对象推荐模型训练方案,通过针对风险偏好损失项设置加权值,可以控制风险偏好项对总损失函数的贡献度,由此进一步提升对象推荐模型的应用场景适应度。By using the above-mentioned object recommendation model training scheme and setting a weighted value for the risk preference loss item, the contribution of the risk preference item to the total loss function can be controlled, thereby further improving the application scenario adaptability of the object recommendation model.
在如上训练出对象推荐模型后,可以基于对象推荐模型来预测目标对象是否是推荐对象,由此实现对象推荐处理。After the object recommendation model is trained as above, it is possible to predict whether the target object is a recommended object based on the object recommendation model, thereby implementing object recommendation processing.
图6示出了根据本说明书的实施例的用于基于对象推荐模型确定推荐对象的方法600的示例流程图。FIG. 6 shows an example flow chart of a
如图6所示,在610,将用户特征、目标对象的对象特征和用户交互对象的对象特征提供给对象推荐模型的嵌入层,得到用户特征的用户特征嵌入表征、目标对象和用户交互对象的对象特征嵌入表征。As shown in FIG. 6 , at 610 , user features, object features of the target object, and object features of the user interaction object are provided to the embedding layer of the object recommendation model to obtain user feature embedding representations of the user features and object feature embedding representations of the target object and the user interaction object.
在620,将目标对象和用户交互对象的对象特征嵌入表征分别提供给对象推荐模型的图神经网络来基于对象知识图谱进行图增强处理,得到目标对象和用户交互对象的经过图增强处理后的对象特征嵌入表征。At 620, the object feature embedding representations of the target object and the user interaction object are respectively provided to the graph neural network of the object recommendation model to perform graph enhancement processing based on the object knowledge graph, so as to obtain the object feature embedding representations of the target object and the user interaction object after graph enhancement processing.
在630,经由对象推荐模型的解耦层,从用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征。At 630 , a user interest embedding representation and a user conformity embedding representation corresponding to user interest and user conformity psychology are decoupled from the object feature embedding representation of the user interaction object after graph enhancement via the decoupling layer of the object recommendation model.
在一些实施例中,用户交互对象包括多个用户交互对象。在这种情况下,可以经由对象推荐模型的解耦层,从各个用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的特征嵌入表征分量并进行级联,得到用户兴趣嵌入表征和用户从众嵌入表征。In some embodiments, the user interaction object includes multiple user interaction objects. In this case, the feature embedding representation components corresponding to user interests and user conformity can be decoupled from the object feature embedding representations of each user interaction object after graph enhancement through the decoupling layer of the object recommendation model and cascaded to obtain the user interest embedding representation and the user conformity embedding representation.
在640,将用户特征嵌入表征分别与用户兴趣嵌入表征和用户从众嵌入表征融合,并将所得到的各个融合结果分别提供给对象推荐模型的表征层得到用户兴趣表征和用户从众表征。At 640, the user feature embedding representation is fused with the user interest embedding representation and the user conformity embedding representation respectively, and the obtained fusion results are provided to the representation layer of the object recommendation model to obtain the user interest representation and the user conformity representation.
在650,将目标对象的对象特征嵌入表征提供给对象推荐模型的表征层得到目标对象表征。At 650 , the object feature embedding representation of the target object is provided to a representation layer of the object recommendation model to obtain a target object representation.
随后,基于用户兴趣表征、用户从众表征和目标对象表征,确定是否向用户推荐目标对象。Subsequently, based on the user interest representation, the user conformity representation and the target object representation, it is determined whether to recommend the target object to the user.
例如,在一些实施例中,在660,基于用户兴趣表征和目标对象表征预测用户兴趣预测结果,以及基于用户从众表征和目标对象表征预测用户从众预测结果。For example, in some embodiments, at 660 , a user interest prediction result is predicted based on the user interest representation and the target object representation, and a user conformity prediction result is predicted based on the user conformity representation and the target object representation.
在670,根据用户兴趣预测结果和用户从众预测结果,确定是否向用户推荐目标对象。例如,在设置有对象热门度γf的情况下,可以根据下述公式来确定出预测结果yu,f:其中,为用户兴趣预测结果,以及为用户从众预测结果。At 670, it is determined whether to recommend the target object to the user based on the user interest prediction result and the user conformity prediction result. For example, when the object popularity γ f is set, the prediction result y u,f can be determined according to the following formula: in, Predict results for user interests, and Predict results for users following the crowd.
要说明的是,图6中示出的仅仅是对象推荐过程的例示实施例。在其它实施例中,对象推荐模型可以不具有图神经网络,从而不对目标对象和用户交互对象的对象特征嵌入表征执行基于对象知识图谱的图增强处理。It should be noted that what is shown in Figure 6 is only an illustrative embodiment of the object recommendation process. In other embodiments, the object recommendation model may not have a graph neural network, so that the object feature embedding representation of the target object and the user interaction object does not perform graph enhancement processing based on the object knowledge graph.
图7示出了根据本说明书的实施例的对象推荐过程的示例示意图。在图7的示例,以商品推荐为例进行说明。Fig. 7 shows an example schematic diagram of an object recommendation process according to an embodiment of the present specification. In the example of Fig. 7, commodity recommendation is used as an example for explanation.
如图7所示,用户特征被提供给嵌入层,得到用户特征嵌入表征交互商品1的对象特征被提供给嵌入层得到交互商品1的对象特征嵌入表征,并对所得到的对象特征嵌入表征经由图神经网络使用商品知识图谱进行图增强处理后得到交互商品1的经过图增强处理后的对象特征嵌入表征,交互商品2的对象特征被提供给嵌入层得到交互商品2的对象特征嵌入表征,并对所得到的对象特征嵌入表征经由图神经网络使用商品知识图谱进行图增强处理后得到交互商品2的经过图增强处理后的对象特征嵌入表征,以及交互商品n的对象特征被提供给嵌入层得到交互商品n的对象特征嵌入表征,并对所得到的对象特征嵌入表征经由图神经网络使用商品知识图谱进行图增强处理后得到交互商品n的经过图增强处理后的对象特征嵌入表征。目标商品的对象特征被提供给嵌入层得到目标商品的对象特征嵌入表征,并对所得到的对象特征嵌入表征经由图神经网络使用商品知识图谱进行图增强处理后得到目标商品的经过图增强处理后的对象特征嵌入表征xf。目标对象的经过图增强处理后的对象特征嵌入表征被提供给对象推荐模型的表征层得到目标对象表征。As shown in Figure 7, the user features are provided to the embedding layer to obtain the user feature embedding representation The object features of
从交互商品1的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的对象特征嵌入表征分量。从交互商品2的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的对象特征嵌入表征分量。从交互商品n的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的对象特征嵌入表征分量。然后,将从交互商品1到交互商品n的对象特征嵌入表征中解耦出的与用户兴趣对应的对象特征嵌入表征分量级联,得到用户兴趣嵌入表征将从交互商品1到交互商品n的对象特征嵌入表征中解耦出的与用户从众心理对应的对象特征嵌入表征分量级联, 得到用户从众嵌入表征 The object feature embedding representation components corresponding to user interests and user conformity are decoupled from the object feature embedding representation of
随后, 将用户兴趣嵌入表征与用户特征嵌入表征融合, 并将融合结果提供给前馈网络得到用户兴趣表征。将用户从众嵌入表征与用户特征嵌入表征融合,并将融合结果提供给前馈网络得到用户从众表征。然后,基于用户兴趣表征和目标对象表征得到用户兴趣预测结果以及基于用户从众表征和目标对象表征得到用户从众预测结果 Then, user interests are embedded into the representation Embedded representation with user features Fusion, and provide the fusion result to the feedforward network to obtain the user interest representation. Embedded representation with user features Fusion, and provide the fusion result to the feedforward network to obtain the user conformity representation. Then, based on the user interest representation and the target object representation, the user interest prediction result is obtained. And the user conformity prediction result is obtained based on the user conformity representation and the target object representation
在确定出用户兴趣预测结果和用户从众预测结果后,基于用户兴趣预测结果和用户从众预测结果确定是否向用户推荐目标对象。After determining the user interest prediction results and user herd prediction results After that, based on the user interest prediction results and user herd prediction results Determine whether to recommend the target object to the user.
上面参照附图描述了根据本说明书的实施例的对象推荐模型训练方法及对象推荐方法。The object recommendation model training method and the object recommendation method according to the embodiments of the present specification are described above with reference to the accompanying drawings.
图8示出了根据本说明书的实施例的对象推荐模型训练装置800的示例方框图。如图8所示, 对象推荐模型训练装置800包括第一表征生成单元810、 图增强处理单元820、嵌入表征解耦单元830、第二表征生成单元840、 目标对象预测单元850、损失函数确定单元860和模型参数调整单元870。FIG8 shows an example block diagram of an object recommendation model training device 800 according to an embodiment of the present specification. As shown in FIG8 , the object recommendation model training device 800 includes a first representation generation unit 810, a graph enhancement processing unit 820, an embedding representation decoupling unit 830, a second representation generation unit 840, a target object prediction unit 850, a loss function determination unit 860, and a model parameter adjustment unit 870.
第一表征生成单元810、 图增强处理单元820、嵌入表征解耦单元830、第二表征生成单元840、 目标对象预测单元850、损失函数确定单元860和模型调整单元870循环执行操作, 直到满足训练结束条件。The first representation generation unit 810, the graph enhancement processing unit 820, the embedding representation decoupling unit 830, the second representation generation unit 840, the target object prediction unit 850, the loss function determination unit 860 and the model adjustment unit 870 perform operations in a loop until the training end condition is met.
具体地, 在每次循环过程中, 第一表征生成单元810被配置为将用户特征、 目标对象的对象特征、用户交互对象的对象特征和用户交互对象的对象类型分别提供给对象推荐模型的嵌入层,得到用户特征的用户特征嵌入表征、目标对象的对象特征嵌入表征、用户交互对象的对象特征嵌入表征和用户交互对象的对象类型嵌入表征。这里,用户交互对象和目标对象属于同一类型对象,并且对象类型具有对象风险信息。第一表征生成单元810的操作可以参考上面参照图3的310描述的操作。Specifically, in each loop process, the first representation generation unit 810 is configured to provide the user feature, the object feature of the target object, the object feature of the user interaction object, and the object type of the user interaction object to the embedding layer of the object recommendation model, respectively, to obtain the user feature embedding representation of the user feature, the object feature embedding representation of the target object, the object feature embedding representation of the user interaction object, and the object type embedding representation of the user interaction object. Here, the user interaction object and the target object belong to the same type of object, and the object type has object risk information. The operation of the first representation generation unit 810 can refer to the operation described above with reference to 310 of Figure 3.
图增强处理单元820被配置为将目标对象和用户交互对象的对象特征嵌入表征分别提供给对象推荐模型的图神经网络来基于对象知识图谱进行图增强处理,得到目标对象和用户交互对象的经过图增强处理后的对象特征嵌入表征。图增强处理单元820的操作可以参考上面参照图3的320描述的操作。The graph enhancement processing unit 820 is configured to provide the object feature embedding representations of the target object and the user interaction object to the graph neural network of the object recommendation model to perform graph enhancement processing based on the object knowledge graph, and obtain the object feature embedding representations of the target object and the user interaction object after graph enhancement processing. The operation of the graph enhancement processing unit 820 can refer to the operation described above with reference to 320 of FIG. 3.
嵌入表征解耦单元830被配置为经由对象推荐模型的解耦层,从用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。嵌入表征解耦单元830的操作可以参考上面参照图3的330描述的操作。The embedding representation decoupling unit 830 is configured to decouple the user interest embedding representation, user conformity embedding representation and user risk preference embedding representation corresponding to the user interest, user conformity and user risk preference respectively from the object feature embedding representation of the user interaction object after the graph enhancement processing via the decoupling layer of the object recommendation model. The operation of the embedding representation decoupling unit 830 can refer to the operation described above with reference to 330 of FIG. 3 .
第二表征生成单元840被配置为将用户特征嵌入表征分别与用户兴趣嵌入表征和用户从众嵌入表征融合,并将所得到的各个融合结果、目标对象的对象特征嵌入表征以及用户交互对象的对象类型嵌入表征分别提供给对象推荐模型的表征层得到用户兴趣表征、用户从众表征、目标对象表征和用户风险偏好表征。第二表征生成单元840的操作可以参考上面参照图3的340和350描述的操作。The second representation generation unit 840 is configured to fuse the user feature embedding representation with the user interest embedding representation and the user conformity embedding representation, and provide the obtained fusion results, the object feature embedding representation of the target object, and the object type embedding representation of the user interaction object to the representation layer of the object recommendation model to obtain the user interest representation, the user conformity representation, the target object representation, and the user risk preference representation. The operation of the second representation generation unit 840 can refer to the operations described above with reference to 340 and 350 of Figure 3.
目标对象预测单元850被配置为分别基于用户兴趣表征与目标对象表征预测用户兴趣预测结果,以及基于用户从众表征与目标对象表征预测用户从众预测结果。目标对象预测单元850的操作可以参考上面参照图3的360描述的操作。The target object prediction unit 850 is configured to predict the user interest prediction result based on the user interest representation and the target object representation, and predict the user conformity prediction result based on the user conformity representation and the target object representation. The operation of the target object prediction unit 850 may refer to the operation described above with reference to 360 of FIG. 3 .
损失函数确定单元860被配置为响应于不满足训练结束条件,基于用户兴趣预测结果、用户从众预测结果、风险偏好嵌入表征和用户风险偏好表征确定总损失函数。损失函数确定单元860的操作可以参考上面参照图3的380描述的操作。The loss function determination unit 860 is configured to determine the total loss function based on the user interest prediction result, the user conformity prediction result, the risk preference embedding representation, and the user risk preference representation in response to the training end condition not being met. The operation of the loss function determination unit 860 can refer to the operation described above with reference to 380 of FIG. 3.
模型调整单元870被配置为根据总损失函数调整对象推荐模型的模型参数。模型调整单元870的操作可以参考上面参照图3的390描述的操作。The model adjustment unit 870 is configured to adjust the model parameters of the object recommendation model according to the total loss function. The operation of the model adjustment unit 870 may refer to the operation described above with reference to 390 of FIG. 3 .
图9示出了根据本说明书的实施例的损失函数确定单元900的示例方框图。如图9所示,损失函数确定单元900包括用户兴趣损失项确定模块910、用户从众损失项确定模块920、用户风险偏好损失项确定模块930和损失函数确定模块940。FIG9 shows an example block diagram of a loss function determination unit 900 according to an embodiment of the present specification. As shown in FIG9 , the loss function determination unit 900 includes a user interest loss item determination module 910, a user conformity loss item determination module 920, a user risk preference loss item determination module 930, and a loss function determination module 940.
用户兴趣损失项确定模块910被配置为基于用户兴趣预测结果确定用户兴趣损失项。用户兴趣损失项确定模块910的操作可以参考上面参照图4的410描述的操作。The user interest loss item determination module 910 is configured to determine the user interest loss item based on the user interest prediction result. The operation of the user interest loss item determination module 910 may refer to the operation described above with reference to 410 of FIG. 4 .
用户从众损失项确定模块920被配置为基于用户从众预测结果确定用户从众损失项。用户从众损失项确定模块920的操作可以参考上面参照图4的420描述的操作。The user conformity loss term determination module 920 is configured to determine the user conformity loss term based on the user conformity prediction result. The operation of the user conformity loss term determination module 920 may refer to the operation described above with reference to 420 of FIG. 4 .
用户风险偏好损失项确定模块930被配置为基于风险偏好嵌入表征和用户风险偏好表征确定用户风险偏好损失项。用户风险偏好损失项确定模块930的操作可以参考上面参照图4的430描述的操作。The user risk preference loss term determination module 930 is configured to determine the user risk preference loss term based on the risk preference embedding representation and the user risk preference representation. The operation of the user risk preference loss term determination module 930 may refer to the operation described above with reference to 430 of FIG. 4 .
损失函数确定模块940被配置为根据用户兴趣损失项、用户从众损失项和用户风险偏好损失项,确定总损失函数。损失函数确定模块940的操作可以参考上面参照图4的440描述的操作。The loss function determination module 940 is configured to determine a total loss function according to the user interest loss term, the user conformity loss term and the user risk preference loss term. The operation of the loss function determination module 940 may refer to the operation described above with reference to 440 of FIG. 4 .
在一些实施例中,嵌入表征解耦单元830可以经由对象推荐模型的解耦层,基于无监督机制从用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。In some embodiments, the embedding representation decoupling unit 830 can decouple the user interest embedding representation, user conformity embedding representation and user risk preference embedding representation corresponding to user interests, user conformity and user risk preferences respectively from the object feature embedding representation of the user interaction object based on an unsupervised mechanism via the decoupling layer of the object recommendation model.
在一些实施例中,解耦层可以包括自注意力网络。嵌入表征解耦单元830可以将用户交互对象的对象特征嵌入表征提供给自注意力网络,以从用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。In some embodiments, the decoupling layer may include a self-attention network. The embedding representation decoupling unit 830 may provide the object feature embedding representation of the user interaction object to the self-attention network to decouple the user interest embedding representation, user conformity embedding representation, and user risk preference embedding representation corresponding to the user interest, user conformity, and user risk preference, respectively, from the object feature embedding representation of the user interaction object.
在一些实施例中,用户交互对象可以包括多个用户交互对象。嵌入表征解耦单元830被配置经由对象推荐模型的解耦层,从各个用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的特征嵌入表征分量并进行级联,得到用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。In some embodiments, the user interaction object may include multiple user interaction objects. The embedding representation decoupling unit 830 is configured to decouple the feature embedding representation components corresponding to the user interest, user conformity and user risk preference from the object feature embedding representation of each user interaction object through the decoupling layer of the object recommendation model and cascade them to obtain the user interest embedding representation, the user conformity embedding representation and the user risk preference embedding representation.
要说明的是,图8示出的仅仅是对象推荐模型训练装置的例示实施例。在图4的示例中,使用用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征三者来进行对象推荐模型建模。It should be noted that Fig. 8 only shows an exemplary embodiment of the object recommendation model training device. In the example of Fig. 4, the object recommendation model is modeled using the user interest embedding representation, the user conformity embedding representation and the user risk preference embedding representation.
在一些实施例中,可以仅仅使用用户兴趣嵌入表征和用户从众嵌入表征二者来进行对象推荐模型建模。在这种情况下,在进行模型训练时,第一表征生成单元将用户特征、目标对象的对象特征和用户交互对象的对象特征分别提供给对象推荐模型的嵌入层,得到用户特征的用户特征嵌入表征、目标对象的对象特征嵌入表征和用户交互对象的对象特征嵌入表征。嵌入表征解耦单元经由对象推荐模型的解耦层,从用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征。第二表征生成单元将用户特征嵌入表征分别与用户兴趣嵌入表征和用户从众嵌入表征融合,并将所得到的各个融合结果和目标对象的对象特征嵌入表征分别提供给对象推荐模型的表征层得到用户兴趣表征、用户从众表征和目标对象表征。随后,损失函数确定单元基于用户兴趣预测结果和用户从众预测结果确定总损失函数。具体地,损失函数确定单元基于用户兴趣预测结果确定用户兴趣损失项,以及基于用户从众预测结果确定用户从众损失项。然后,根据用户兴趣损失项和用户从众损失项,确定总损失函数。In some embodiments, only the user interest embedding representation and the user conformity embedding representation can be used to model the object recommendation model. In this case, when the model is trained, the first representation generation unit provides the user features, the object features of the target object, and the object features of the user interaction object to the embedding layer of the object recommendation model, respectively, to obtain the user feature embedding representation of the user features, the object feature embedding representation of the target object, and the object feature embedding representation of the user interaction object. The embedding representation decoupling unit decouples the user interest embedding representation and the user conformity embedding representation corresponding to the user interest and the user conformity psychology from the object feature embedding representation of the user interaction object after the graph enhancement processing through the decoupling layer of the object recommendation model. The second representation generation unit fuses the user feature embedding representation with the user interest embedding representation and the user conformity embedding representation, respectively, and provides the obtained fusion results and the object feature embedding representation of the target object to the representation layer of the object recommendation model to obtain the user interest representation, the user conformity representation, and the target object representation. Subsequently, the loss function determination unit determines the total loss function based on the user interest prediction result and the user conformity prediction result. Specifically, the loss function determination unit determines the user interest loss term based on the user interest prediction result, and determines the user conformity loss term based on the user conformity prediction result. Then, the total loss function is determined based on the user interest loss term and the user conformity loss term.
在一些实施例中,对象推荐模型可以不包括图神经网络。相应地,对象推荐模型训练装置可以不包括图增强处理单元,从而不对目标对象和用户交互对象的对象特征嵌入表征执行基于对象知识图谱的图增强处理。In some embodiments, the object recommendation model may not include a graph neural network. Accordingly, the object recommendation model training device may not include a graph enhancement processing unit, so as not to perform graph enhancement processing based on the object knowledge graph on the object feature embedding representation of the target object and the user interaction object.
图10示出了根据本说明书的实施例的对象推荐装置1000的示例方框图。如图10所示,对象推荐装置1000包括第一表征生成单元1010、图增强处理单元1020、嵌入表征解耦单元1030、第二表征生成单元1040和推荐决策单元1050。Fig. 10 shows an example block diagram of an object recommendation apparatus 1000 according to an embodiment of the present specification. As shown in Fig. 10, the object recommendation apparatus 1000 includes a first representation generation unit 1010, a graph enhancement processing unit 1020, an embedding representation decoupling unit 1030, a second representation generation unit 1040 and a recommendation decision unit 1050.
第一表征生成单元1010被配置为将用户特征、目标对象的对象特征和用户交互对象的对象特征提供给对象推荐模型的嵌入层,得到用户特征的用户特征嵌入表征、目标对象和用户交互对象的对象特征嵌入表征。第一表征生成单元1010的操作可以参考上面参照图6的610描述的操作。The first representation generation unit 1010 is configured to provide the user features, the object features of the target object, and the object features of the user interaction object to the embedding layer of the object recommendation model to obtain the user feature embedding representation of the user features, and the object feature embedding representation of the target object and the user interaction object. The operation of the first representation generation unit 1010 may refer to the operation described above with reference to 610 of FIG. 6 .
图增强处理单元1020被配置为将目标对象的对象特征嵌入表征以及用户交互对象的对象特征嵌入表征分别提供给对象推荐模型的图神经网络来基于对象知识图谱进行图增强处理,得到目标对象和用户交互对象的经过图增强处理后的对象特征嵌入表征。图增强处理单元1020的操作可以参考上面参照图6的620描述的操作。The graph enhancement processing unit 1020 is configured to provide the object feature embedding representation of the target object and the object feature embedding representation of the user interaction object to the graph neural network of the object recommendation model to perform graph enhancement processing based on the object knowledge graph, and obtain the object feature embedding representation of the target object and the user interaction object after graph enhancement processing. The operation of the graph enhancement processing unit 1020 can refer to the operation described above with reference to 620 of FIG. 6.
嵌入表征解耦单元1030被配置为经由对象推荐模型的解耦层,从用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征。在一些实施例中,用户交互对象可以包括多个用户交互对象。嵌入表征解耦单元1030被配置经由对象推荐模型的解耦层,从各个用户交互对象的经过图增强处理后的对象特征嵌入表征中解耦出分别与用户兴趣、用户从众心理和用户风险偏好对应的特征嵌入表征分量并进行级联,得到用户兴趣嵌入表征、用户从众嵌入表征和用户风险偏好嵌入表征。嵌入表征解耦单元1030的操作可以参考上面参照图6的630描述的操作。The embedding representation decoupling unit 1030 is configured to decouple the user interest embedding representation and the user conformity embedding representation corresponding to the user interest and the user conformity psychology respectively from the object feature embedding representation of the user interaction object after the graph enhancement processing via the decoupling layer of the object recommendation model. In some embodiments, the user interaction object may include multiple user interaction objects. The embedding representation decoupling unit 1030 is configured to decouple the feature embedding representation components corresponding to the user interest, the user conformity psychology and the user risk preference respectively from the object feature embedding representation of each user interaction object after the graph enhancement processing via the decoupling layer of the object recommendation model and cascade them to obtain the user interest embedding representation, the user conformity embedding representation and the user risk preference embedding representation. The operation of the embedding representation decoupling unit 1030 can refer to the operation described above with reference to 630 of Figure 6.
第二表征生成单元1040被配置为将用户特征嵌入表征分别与用户兴趣嵌入表征和用户从众嵌入表征融合,并将所得到的各个融合结果以及目标对象的对象特征嵌入表征分别提供给对象推荐模型的表征层得到用户兴趣表征、用户从众表征以及目标对象表征。第二表征生成单元1040的操作可以参考上面参照图6的640和650描述的操作。The second representation generation unit 1040 is configured to fuse the user feature embedding representation with the user interest embedding representation and the user conformity embedding representation, and provide the obtained fusion results and the object feature embedding representation of the target object to the representation layer of the object recommendation model to obtain the user interest representation, the user conformity representation and the target object representation. The operation of the second representation generation unit 1040 can refer to the operations described above with reference to 640 and 650 of FIG. 6.
推荐决策单元1050被配置为基于用户兴趣表征、用户从众表征以及目标对象表征,确定是否向用户推荐所述目标对象。例如,推荐决策单元1050可以基于用户兴趣表征与目标对象表征预测用户兴趣预测结果,以及基于用户从众表征与目标对象表征预测用户从众预测结果,并根据用户兴趣预测结果和用户从众预测结果,确定是否向用户推荐目标对象。推荐决策单元1050的操作可以参考上面参照图6的660和670描述的操作。The recommendation decision unit 1050 is configured to determine whether to recommend the target object to the user based on the user interest representation, the user conformity representation, and the target object representation. For example, the recommendation decision unit 1050 can predict the user interest prediction result based on the user interest representation and the target object representation, and predict the user conformity prediction result based on the user conformity representation and the target object representation, and determine whether to recommend the target object to the user based on the user interest prediction result and the user conformity prediction result. The operation of the recommendation decision unit 1050 can refer to the operations described above with reference to 660 and 670 of Figure 6.
如上参照图1到图10,对根据本说明书实施例的对象推荐模型训练方法、对象推荐模型训练装置、对象推荐方法及对象推荐装置进行了描述。上面的对象推荐模型训练装置和对象推荐装置可以采用硬件实现,也可以采用软件或者硬件和软件的组合来实现。As described above with reference to Figures 1 to 10, the object recommendation model training method, object recommendation model training device, object recommendation method and object recommendation device according to the embodiments of this specification are described. The above object recommendation model training device and object recommendation device can be implemented by hardware, or by software or a combination of hardware and software.
图11示出了根据本说明书的实施例的基于计算机系统实现的对象推荐模型训练装置1100的示例示意图。如图11所示,对象推荐模型训练装置1100可以包括至少一个处理器1110、存储器(例如,非易失性存储器)1120、内存1130和通信接口1140,并且至少一个处理器1110、存储器1120、内存1130和通信接口1140经由总线1160连接在一起。至少一个处理器1110执行在存储器中存储或编码的至少一个计算机可读指令(即,上述以软件形式实现的元素)。FIG11 shows an example schematic diagram of an object recommendation model training device 1100 implemented based on a computer system according to an embodiment of the present specification. As shown in FIG11 , the object recommendation model training device 1100 may include at least one processor 1110, a memory (e.g., a non-volatile memory) 1120, a memory 1130, and a communication interface 1140, and the at least one processor 1110, the memory 1120, the memory 1130, and the communication interface 1140 are connected together via a bus 1160. At least one processor 1110 executes at least one computer-readable instruction stored or encoded in the memory (i.e., the above-mentioned element implemented in software form).
在一个实施例中,在存储器中存储计算机可执行指令,其当执行时使得至少一个处理器1110:循环执行下述模型训练过程,直到满足训练结束条件:将用户特征、用户交互对象的对象特征和目标对象的对象特征分别提供给对象推荐模型的嵌入层,得到用户特征的用户特征嵌入表征、用户交互对象的对象特征嵌入表征和目标对象的对象特征嵌入表征;经由对象推荐模型的解耦层,从用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征;将用户特征嵌入表征分别与用户兴趣嵌入表征和所述用户从众嵌入表征融合,并将所得到的融合结果和目标对象的对象特征嵌入表征分别提供给对象推荐模型的表征层得到用户兴趣表征、用户从众表征和目标对象表征;基于用户兴趣表征与目标对象表征预测用户兴趣预测结果,以及基于用户从众表征与目标对象表征预测用户从众预测结果;以及响应于不满足所述训练结束条件,基于用户兴趣预测结果和用户从众预测结果确定总损失函数,并根据总损失函数调整所述对象推荐模型的模型参数。In one embodiment, a computer executable instruction is stored in a memory, which, when executed, causes at least one processor 1110 to: loop through the following model training process until a training end condition is met: provide user features, object features of user interaction objects, and object features of target objects to an embedding layer of an object recommendation model, respectively, to obtain a user feature embedding representation of the user features, an object feature embedding representation of the user interaction objects, and an object feature embedding representation of the target object; decouple, via a decoupling layer of the object recommendation model, a user interest embedding representation and a user conformity embedding representation corresponding to user interests and user conformity, respectively, from the object feature embedding representation of the user interaction objects Representation; fusing the user feature embedding representation with the user interest embedding representation and the user conformity embedding representation respectively, and providing the obtained fusion result and the object feature embedding representation of the target object to the representation layer of the object recommendation model to obtain the user interest representation, the user conformity representation and the target object representation; predicting the user interest prediction result based on the user interest representation and the target object representation, and predicting the user conformity prediction result based on the user conformity representation and the target object representation; and in response to not meeting the training end condition, determining the total loss function based on the user interest prediction result and the user conformity prediction result, and adjusting the model parameters of the object recommendation model according to the total loss function.
应该理解,在存储器中存储的计算机可执行指令当执行时使得至少一个处理器1110进行本说明书的各个实施例中以上结合图1-图5以及图8-图9描述的各种操作和功能。It should be understood that the computer executable instructions stored in the memory, when executed, enable at least one processor 1110 to perform various operations and functions described above in conjunction with Figures 1-5 and Figures 8-9 in various embodiments of this specification.
图12示出了根据本说明书的实施例的基于计算机系统实现的对象推荐装置1200的示例示意图。如图12所示,对象推荐装置1200可以包括至少一个处理器1210、存储器(例如,非易失性存储器)1220、内存1230和通信接口1240,并且至少一个处理器1210、存储器1220、内存1230和通信接口1240经由总线1260连接在一起。至少一个处理器1210执行在存储器中存储或编码的至少一个计算机可读指令(即,上述以软件形式实现的元素)。FIG12 shows an example schematic diagram of an object recommendation device 1200 implemented based on a computer system according to an embodiment of the present specification. As shown in FIG12 , the object recommendation device 1200 may include at least one processor 1210, a memory (e.g., a non-volatile memory) 1220, a memory 1230, and a communication interface 1240, and the at least one processor 1210, the memory 1220, the memory 1230, and the communication interface 1240 are connected together via a bus 1260. At least one processor 1210 executes at least one computer-readable instruction stored or encoded in the memory (i.e., the above-mentioned element implemented in the form of software).
在一个实施例中,在存储器中存储计算机可执行指令,其当执行时使得至少一个处理器1210:将用户特征、用户交互对象的对象特征和目标对象的对象特征分别提供给对象推荐模型的嵌入层,得到用户特征的用户特征嵌入表征、用户交互对象的对象特征嵌入表征和目标对象的对象特征嵌入表征;经由对象推荐模型的解耦层,从用户交互对象的对象特征嵌入表征中解耦出分别与用户兴趣和用户从众心理对应的用户兴趣嵌入表征和用户从众嵌入表征;将用户特征嵌入表征分别与用户兴趣嵌入表征和用户从众嵌入表征融合,并将所得到的融合结果和目标对象的对象特征嵌入表征分别提供给对象推荐模型的表征层得到用户兴趣表征、用户从众表征和目标对象表征;以及基于用户兴趣表征、用户从众表征以及目标对象表征,确定是否向用户推荐目标对象。In one embodiment, computer executable instructions are stored in a memory, which when executed cause at least one processor 1210 to: provide user features, object features of user interaction objects, and object features of target objects to an embedding layer of an object recommendation model, respectively, to obtain user feature embedding representations of user features, object feature embedding representations of user interaction objects, and object feature embedding representations of target objects; decouple user interest embedding representations and user conformity embedding representations, respectively corresponding to user interests and user herd mentality, from the object feature embedding representations of user interaction objects via a decoupling layer of the object recommendation model; fuse the user feature embedding representation with the user interest embedding representation and the user herd embedding representation, respectively, and provide the obtained fusion result and the object feature embedding representation of the target object to the representation layer of the object recommendation model, respectively, to obtain user interest representation, user herd representation, and target object representation; and determine whether to recommend the target object to the user based on the user interest representation, the user herd representation, and the target object representation.
应该理解,在存储器中存储的计算机可执行指令当执行时使得至少一个处理器1210进行本说明书的各个实施例中以上结合图6-图7以及图10描述的各种操作和功能。It should be understood that the computer executable instructions stored in the memory, when executed, enable at least one processor 1210 to perform the various operations and functions described above in conjunction with Figures 6-7 and Figure 10 in the various embodiments of this specification.
根据一个实施例,提供了一种比如机器可读介质(例如,非暂时性机器可读介质)的程序产品。机器可读介质可以具有指令(即,上述以软件形式实现的元素),该指令当被机器执行时,使得机器执行本说明书的各个实施例中以上结合图1-图10描述的各种操作和功能。具体地,可以提供配有可读存储介质的系统或者装置,在该可读存储介质上存储着实现上述实施例中任一实施例的功能的软件程序代码,且使该系统或者装置的计算机或处理器读出并执行存储在该可读存储介质中的指令。According to one embodiment, a program product such as a machine-readable medium (e.g., a non-transitory machine-readable medium) is provided. The machine-readable medium may have instructions (i.e., the above-mentioned elements implemented in software form), which, when executed by a machine, causes the machine to perform the various operations and functions described above in conjunction with Figures 1-10 in the various embodiments of this specification. Specifically, a system or device equipped with a readable storage medium may be provided, on which a software program code that implements the functions of any of the above-mentioned embodiments is stored, and a computer or processor of the system or device is caused to read and execute instructions stored in the readable storage medium.
在这种情况下,从可读介质读取的程序代码本身可实现上述实施例中任何一项实施例的功能,因此机器可读代码和存储机器可读代码的可读存储介质构成了本发明的一部分。In this case, the program code itself read from the machine-readable medium can realize the function of any one of the above-mentioned embodiments, and thus the machine-readable code and the machine-readable storage medium storing the machine-readable code constitute a part of the present invention.
可读存储介质的实施例包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD-RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机上或云上下载程序代码。Examples of readable storage media include floppy disks, hard disks, magneto-optical disks, optical disks (such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD-RW), magnetic tapes, non-volatile memory cards, and ROMs. Alternatively, the program code may be downloaded from a server computer or a cloud via a communication network.
根据一个实施例,提供一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序当被处理器执行时,使得处理器执行本说明书的各个实施例中以上结合图1-图10描述的各种操作和功能。According to one embodiment, a computer program product is provided, which includes a computer program. When the computer program is executed by a processor, the processor performs the various operations and functions described above in conjunction with Figures 1 to 10 in the various embodiments of this specification.
本领域技术人员应当理解,上面公开的各个实施例可以在不偏离发明实质的情况下做出各种变形和修改。因此,本发明的保护范围应当由所附的权利要求书来限定。Those skilled in the art should understand that the various embodiments disclosed above can be modified and altered in various ways without departing from the essence of the invention. Therefore, the protection scope of the present invention should be defined by the appended claims.
需要说明的是,上述各流程和各系统结构图中不是所有的步骤和单元都是必须的,可以根据实际的需要忽略某些步骤或单元。各步骤的执行顺序不是固定的,可以根据需要进行确定。上述各实施例中描述的装置结构可以是物理结构,也可以是逻辑结构,即,有些单元可能由同一物理实体实现,或者,有些单元可能分由多个物理实体实现,或者,可以由多个独立设备中的某些部件共同实现。It should be noted that not all steps and units in the above-mentioned processes and system structure diagrams are necessary, and some steps or units can be ignored according to actual needs. The execution order of each step is not fixed and can be determined as needed. The device structure described in the above-mentioned embodiments can be a physical structure or a logical structure, that is, some units may be implemented by the same physical entity, or some units may be implemented by multiple physical entities, or some components in multiple independent devices may be implemented together.
以上各实施例中,硬件单元或模块可以通过机械方式或电气方式实现。例如,一个硬件单元、模块或处理器可以包括永久性专用的电路或逻辑(如专门的处理器,FPGA或ASIC)来完成相应操作。硬件单元或处理器还可以包括可编程逻辑或电路(如通用处理器或其它可编程处理器),可以由软件进行临时的设置以完成相应操作。具体的实现方式(机械方式、或专用的永久性电路、或者临时设置的电路)可以基于成本和时间上的考虑来确定。In the above embodiments, the hardware unit or module can be realized by mechanical or electrical means. For example, a hardware unit, module or processor can include permanent dedicated circuit or logic (such as special processor, FPGA or ASIC) to complete the corresponding operation. The hardware unit or processor can also include programmable logic or circuit (such as general-purpose processor or other programmable processor), which can be temporarily set by software to complete the corresponding operation. Specific implementation (mechanical method or dedicated permanent circuit or temporary circuit) can be determined based on cost and time consideration.
上面结合附图阐述的具体实施方式描述了示例性实施例,但并不表示可以实现的或者落入权利要求书的保护范围的所有实施例。在整个本说明书中使用的术语“示例性”意味着“用作示例、实例或例示”,并不意味着比其它实施例“优选”或“具有优势”。出于提供对所描述技术的理解的目的,具体实施方式包括具体细节。然而,可以在没有这些具体细节的情况下实施这些技术。在一些实例中,为了避免对所描述的实施例的概念造成难以理解,公知的结构和装置以框图形式示出。The specific embodiments described above in conjunction with the accompanying drawings describe exemplary embodiments, but do not represent all embodiments that can be implemented or fall within the scope of protection of the claims. The term "exemplary" used throughout this specification means "used as an example, instance or illustration" and does not mean "preferred" or "having advantages" over other embodiments. For the purpose of providing an understanding of the described technology, the specific embodiments include specific details. However, these technologies can be implemented without these specific details. In some instances, in order to avoid making the concepts of the described embodiments difficult to understand, well-known structures and devices are shown in block diagram form.
本公开内容的上述描述被提供来使得本领域任何普通技术人员能够实现或者使用本公开内容。对于本领域普通技术人员来说,对本公开内容进行的各种修改是显而易见的,并且,也可以在不脱离本公开内容的保护范围的情况下,将本文所定义的一般性原理应用于其它变型。因此,本公开内容并不限于本文所描述的示例和设计,而是与符合本文公开的原理和新颖性特征的最广范围相一致。The above description of the disclosure is provided to enable any person of ordinary skill in the art to implement or use the disclosure. Various modifications to the disclosure will be apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other variations without departing from the scope of protection of the disclosure. Therefore, the disclosure is not limited to the examples and designs described herein, but is consistent with the widest range of principles and novel features disclosed herein.
Claims (21)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310274863.7A CN116304337A (en) | 2023-03-15 | 2023-03-15 | Object recommendation model training method, recommendation object determining method and device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310274863.7A CN116304337A (en) | 2023-03-15 | 2023-03-15 | Object recommendation model training method, recommendation object determining method and device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116304337A true CN116304337A (en) | 2023-06-23 |
Family
ID=86830257
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310274863.7A Pending CN116304337A (en) | 2023-03-15 | 2023-03-15 | Object recommendation model training method, recommendation object determining method and device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116304337A (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200110783A1 (en) * | 2018-10-08 | 2020-04-09 | Yandex Europe Ag | Method and system for estimating user-item interaction data |
| CN111815415A (en) * | 2020-07-14 | 2020-10-23 | 北京邮电大学 | A product recommendation method, system and device |
| CN113761388A (en) * | 2021-07-26 | 2021-12-07 | 清华大学 | A recommended method, device, electronic device and storage medium |
-
2023
- 2023-03-15 CN CN202310274863.7A patent/CN116304337A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20200110783A1 (en) * | 2018-10-08 | 2020-04-09 | Yandex Europe Ag | Method and system for estimating user-item interaction data |
| CN111815415A (en) * | 2020-07-14 | 2020-10-23 | 北京邮电大学 | A product recommendation method, system and device |
| CN113761388A (en) * | 2021-07-26 | 2021-12-07 | 清华大学 | A recommended method, device, electronic device and storage medium |
Non-Patent Citations (2)
| Title |
|---|
| YU ZHENG ET AL.: "Disentangling User Interest and Conformity for Recommendation with Causal Embedding", ARXIV, 19 February 2021 (2021-02-19), pages 1 - 12 * |
| 欧阳智强: "基于注意力机制的个性化推荐模型及关键技术研究", 硕士论文, 15 January 2023 (2023-01-15) * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111310063B (en) | Neural network-based article recommendation method for memory perception gated factorization machine | |
| CN111382309B (en) | Short video recommendation method based on graph model, intelligent terminal and storage medium | |
| CN111353091B (en) | Information processing method, device, electronic device and readable storage medium | |
| CN113268656B (en) | User recommendation method, device, electronic device and computer storage medium | |
| CN111709810A (en) | Object recommendation method and device based on recommendation model | |
| CN113761388B (en) | Recommendation method, device, electronic device and storage medium | |
| CN116601626A (en) | Personal knowledge map construction method, device and related equipment | |
| Krawczyk et al. | Instance reduction for one-class classification | |
| CN119398824B (en) | Internet big data analysis method and system based on artificial intelligence | |
| CN110598118A (en) | Resource object recommendation method and device and computer readable medium | |
| CN116204723A (en) | Social recommendation method based on dynamic hypergraph representation learning | |
| CN115358809A (en) | Multi-intention recommendation method and device based on graph comparison learning | |
| CN116452263A (en) | Information recommendation method, device, equipment, storage medium and program product | |
| CN120146972B (en) | Virtual fitting personalized clothing recommendation method based on artificial intelligence | |
| CN113505305A (en) | Collaborative filtering recommendation method and system based on decoupling type two-channel hypergraph neural network | |
| CN116883285A (en) | Product image optimization method and system based on intelligent electronic commerce platform | |
| CN119831684A (en) | Article recommendation method and device, storage medium and electronic equipment | |
| CN111815410B (en) | Commodity recommendation method based on selective neighborhood information | |
| CN116304337A (en) | Object recommendation model training method, recommendation object determining method and device | |
| CN117874355B (en) | Cross-domain data recommendation method, device, electronic device and storage medium | |
| CN119205027A (en) | Control method of approval process, computing device and readable storage medium | |
| CN119205026A (en) | Control method of approval process, computing device and readable storage medium | |
| CN119624592A (en) | A product intelligent recommendation method and system based on large model | |
| CN119398880A (en) | Item recommendation method, device, non-volatile storage medium and computer device | |
| CN118840177A (en) | Commodity list recommendation method and system based on multiple different composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |