Kuo, 2019 - Google Patents
A Framework for Fusing Video and Wearable Sensing Data by Deep LearningKuo, 2019
- Document ID
- 4906271211260463560
- Author
- Kuo P
- Publication year
- Publication venue
- PQDT-Global
External Links
Snippet
Both cameras and IoT devices have their particular capabilities in tracking human behaviors and statuses. Their correlations are, however, unclear. In this work, we propose a framework for integrating video and wearable sensing data for smart surveillance, such as people …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00288—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00362—Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00335—Recognising movements or behaviour, e.g. recognition of gestures, dynamic facial expressions; Lip-reading
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00771—Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
- G06K9/00778—Recognition or static of dynamic crowd images, e.g. recognition of crowd congestion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00006—Acquiring or recognising fingerprints or palmprints
- G06K9/00013—Image acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
- G06K9/4609—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections by matching or filtering
- G06K9/4619—Biologically-inspired filters, e.g. receptive fields
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00597—Acquiring or recognising eyes, e.g. iris verification
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zou et al. | Deep learning-based gait recognition using smartphones in the wild | |
Makihara et al. | Gait recognition: Databases, representations, and applications | |
Zeng et al. | A hierarchical spatio-temporal graph convolutional neural network for anomaly detection in videos | |
Singh et al. | A Survey of Behavioral Biometric Gait Recognition: Current Success and Future Perspectives. | |
Tran et al. | Data augmentation for inertial sensor-based gait deep neural network | |
Nazar et al. | Wearable Sensor-Based Activity Recognition over Statistical Features Selection and MLP Approach | |
CN113378649A (en) | Identity, position and action recognition method, system, electronic equipment and storage medium | |
Hasan et al. | Gait recognition with wearable sensors using modified residual block-based lightweight cnn | |
Yadav et al. | Human Illegal Activity Recognition Based on Deep Learning Techniques | |
Sun et al. | Real-time elderly monitoring for senior safety by lightweight human action recognition | |
Miao et al. | Application of human motion recognition technology in extreme learning machine | |
Khowaja et al. | Facial expression recognition using two-tier classification and its application to smart home automation system | |
de Lima et al. | Gait recognition using pose estimation and signal processing | |
Clapés et al. | Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly | |
Sharif et al. | Human gait recognition using deep learning: A comprehensive review | |
Nahar et al. | Twins and similar faces recognition using geometric and photometric features with transfer learning | |
Dubey et al. | IMU data based HAR using hybrid model of CNN & stacked LSTM | |
Ezzeldin et al. | Survey on multimodal complex human activity recognition | |
Li et al. | Dynamic long short-term memory network for skeleton-based gait recognition | |
Sezavar et al. | Smartphone-based gait recognition using convolutional neural networks and dual-tree complex wavelet transform | |
Bukht et al. | Enhanced Human Interaction Recognition Framework using Pyramid Matching and Deep Neural Network | |
Atrushi et al. | Human gait recognition based on deep learning: a review | |
Ahmed et al. | Robust suspicious action recognition approach using pose descriptor | |
Du et al. | SKIP: Accurate fall detection based on skeleton keypoint association and critical feature perception | |
Sivarathinabala et al. | A study on security and surveillance system using gait recognition |