Scalar Evolution -
Demystified

Javed Absar (javed.absar@arm.com)

Contents

* Introduction

* Mathematical Framework

e Scalar Evolution (SCEV) Implementation in LLVM
* SCEV as a Service

 Some Additional Topics

e Conclusion

, ©2018 Arm Limited arm

Introduction — Scalar

Evolution

© 2018 arm arm

+ + + + + + + + + + +

Scalar Evolution:

Change in the Value of
Scalar Variables

Over lterations of the
Loop

- unknown compiler engineer

arm

Introduction — Scalar Evolution

- Powerful symbolic technique
« LLVM SCEV - Practical implementation
- Passes using SCEV
— Loop strength reduction (LSR)
— Induction Variable Simplify (IndVars)
— Loop Vectorizer, SLP Vectorizer, Load Store Vectorizer, Re-associate nary expr

— Loop Access Analysis, Dependence Analysis, SCEV-AA

5 ©2018 Arm Limited arm

Introduction — Scalar Evolution

void foo(int *a, int n, int k) {
intt =0;
for (inti =0; i <n; i++)
t=t+k;
*a = t;

b

< I

t = t+k

!

t=">
6 © 2018 Arm Limited

arm

Introduction — Scalar Evolution

7

. for.body:

%i = phi i32 [%inc, %for.body], [0, %for.body.preheader]
%t = phii32 [%tk, %for.body], [0, %for.body.preheader]
%tk = add nsw i32 %t, %k

%inc = add nuw nsw i32 %i, 1

%cmp = icmp slt i32 %inc, %n

br il %cmp, label %for.body, label %for.cond.cleanup

NOUERW N

for.cond.cleanup:
%tk.final = phi i32 [0, %entry], [%tk, %for.body]
8. store i32 %tk.final, i32* %a

*** IR Dump After Induction Variable Simplification ***

1’. for.cond.cleanup.loopexit:
2. %tk.final = mul i32 %n, %k
3’. store i32 %tk.final, i32* %a

© 2018 Arm Limited

arm

Introduction — Scalar Evolution

int foo(int *a, int n, int k) {
for (inti=0;i<n;i++)
ali] = i*k;

g © 2018 Arm Limited

arm

Introduction — Scalar Evolution

in

t foo(int *a, int n, int k) {

for (inti =0;i<n;i++)

-

ali] = i*k;

NOUAWN e

. *¥** IR Dump After Canonicalize natural loops ***

for.body:
%i = phi i32 [%inc, %for.body], [0, %for.body.preheader]
%ik = mul nsw i32 %i, %k

%%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i
store i32 %ik, i32* %arrayidx

17,

2’

3"
4',
5"
6.

*** IR Dump After Loop Strength Reduction ***

. for.body:

%IV_IK = phi i32 [0, %for.body.preheader], [%IV_IK_plus_K, %for.body]
store i32 %IV_IK, i32* %lsr.iv

%lsr.iv.next = add i32 %lsr.iv7, -1

%]IV_IK_plus_K = add i32 %IV_IK, %k

9

© 2018 Arm Limited

arm

Mathematical
‘Framework - Chain of
‘Recurrences

arm

Induction Variable

Basic Induction Variable (BIV):

* Increases or decreases by a constant on each iteration of the loop
Generalized Induction Variable (GIV)

 Update value is not constant

* Dependent on other BIVs/GIVs (linear, non-linear), multiple update

11 ©2018 Arm Limited arm

Chain of Recurrences

Formalism to analyse expressions in BIV and GIV

Express as Recurrences

Factorial
nl=1x2x..n & n!l=(n-1)! xn
fo =] |k, & f() = f(n—1)*n
k=1

1, ©2018 Arm Limited arm

Basic Recurrences

ko, k, are loop-invariants f=iko
int f = kO; =f
for (inti =0;i<n;i++){

..=f;
A F=f+kl

~ (k ifi = 0
f<l)={f2i—1)+klifi>0}

basic recurrence = {ko, +, kl}i

15 © 2018 Arm Limited arm

Basic Recurrences

BR = {3,+,7},

Generates: 3 10 17 24 31

f=3
int f = 3;
..=f for (inti=0;i<n;i++){
.. =f;
f=Ff+ 7,
f=f+7 >
~ (3 ifi=0
14+ ©2018 Arm Limited f) = {f(i -1 +7ifi > 0} arm

Basic Recurrence — Example

int foo(int *a, int n, int k){
for (inti=0;i<n; i++)
ali] = i*k;

b

$ opt -analyze -scalar-evolution foo.ll

. Printing analysis 'Scalar Evolution Analysis' for function 'foo':
. Classifying expressions for: @foo

. Yomul = mul nsw i32 %i, %k
. ==> {0,+,%k}<%for.body> Exits: ((-1 + %n) * %k)

S:hu'l-h_t.'u)l\)l—L

15 ©2018 Arm Limited arm

Chain Recurrences

16 © 2018 Arm Limited

CR={1,+13,+7}}
_'_I

. 'f1(i),
fo (D)

. 3 ifi=20
f1(l):{f1(i_1)-|-7 ifi>0}

. 1 ifi =0
fo(D) = {fo(i -+ f1G—1) ifi > O}

CR — {1I +I {3I +I 7}} <:> {1I+I3I+I7}

arm

Chain Recurrences

for (intx =0; x < n; x++)
p[X] = X*x*X + 2*x*x + 3*x + 7;

17 © 2018 Arm Limited

CR = {7,+,6,+,10,+,6)

X 1 2 3 4 5
p(x) t 7 s 13 29 61 115 197
™
A (6 ’ 16 32 54 82
A? - { 10 ’ 16 22 28
A3 = - t 6 > 6 6

arm

Chain Recurrences

13 © 2018 Arm Limited

-
—-—
—
—

’——
-
-

———
—
-
-

CR = {7,+,6,+,10,+,6)

f1 (D) f2 (D)
__________ 6 __.----- 10 T
_-- 0 - e e
_________ 16 __.----7 16 T
o W16 < w6 <
_________ 32 eemmm 22 IS
o 222 < w6 <
54 28
f0(0) fo(1) fo(2) fo(3)
p(x) = 7 13 29 61

arm

Chain of Recurrences

void foo(int *p, int n){
for(intx = 0; x < n; x++)
p[X] = X*x*X + 2*x*x + 3*x + 7;
b

IV Chain#0 Head: (store i32 %add6, i32* %arrayidx.) SCEV={7,+,6,+,10,+,6}<%for.body>

void foo(int *p, int n) {
inttd = 7;
inttl = 6;
intt2 = 10;
for(int x = 0; x < n; x++) {
p[x] = t0;
t0O = t0 + t1;
tl = t1 + t2;
t2 =t2 + 6;
//p[X] = X*x*X + 2*¥X*X + 3*Xx + 7;
b
bs

15 © 2018 Arm Limited arm

Chain of Recurrences - Synopsis

for (i=0; i< n; i++)
. = I*K;

SCEV Analysis

{OI+IO/0k}i

arm

SCEV Rewriting Rules
‘and Implementation in
+LLVM + + +

arm

SCEV Rewriting/Folding

void foo(int *a, short k, int p, int n) {
for (inti =0; i <n; i++)
ali] = (k+i)*p;
b

%i = phii32 [0, %entry], [%inc, %for.body]

%inc = add nuw nsw i32 %i, 1

%i = phii32 [%inc, %for.body], [O, %entry |
--> {0,+,1}xnuw><nsw><%for.body

», © 2018 Arm Limited arm

SCEV Rewriting/Folding

i {7,+,3)} {1, +,1} k=i+j
7 1 8
10 2 12
| |
13 3 16

k=i+j=1{7+1,+3+ 1} ={8,+4}

| e, +.f}+{g, -1} = {e+g+f+h} |

23 © 2018 Arm Limited

arm

SCEV Rewriting/Folding

Expression Rewrite Example

G+{e+f} = {G+e+,f} 12+{7,+,3} = {19,+,3}
G*{e,+, f} = {G*e,+,G*f} 12+{7,+,3} = {84,+,36}

[e, +,f}+1{g9,+ h} = le+g,+ f+h} {7,+,3}+{1,+,1} = {8,+,4} |

= exg,+,
{e,+,f}={g,+ h} exh+fxg+f*h: {0+1}+{0+ 1} ={0,+1,+2}
+,2*fxh

,4 ©2018 Arm Limited arm

)5 © 2018 Arm Limited arm

SCEV Rewriting/Folding

void foo(int *a, short k, int p, int n) {

for (inti =0; i <n; i++)

ali] = (k+i)*p;

b
1. for.body.lIr.ph: ; preds = %entry
2. %K = sext i16 %k to i32
3. brlabel %for.body
4. for.body: ; preds = %for.body, %for.body.Ir.ph
5. %i = phii32 [0, %for.body.lr.ph], [%inc, %for.body]
6. %add = add nsw i32 %i, %K
7. %mul = mul nsw i32 %add, %p
8. %arrayidx = getelementptr inbounds i32, i32* %a, i32 %i
9. store i32 %mul, i32* %arrayidx
10. %inc = add nuw nsw i32 %i, 1
11. %exitcond = icmp eq i32 %inc, %n
12. br il %exitcond, label %for.cond.cleanup, label %for.body

)6 © 2018 Arm Limited arm

SCEV Rewriting/Folding

void foo(int *a, short k, int p, int n) {
for (inti =0; i <n; i++)
ali] = (k+i)*p;
b

%mul = mul nsw i32 %add, %p
> {%K * %p,+, %p}

%add = add nsw i32 %i, %K /
--> {%K,+,
%p --> 132 %p
%K = sext i16 %k to i32 / \
--> (sext i16 %k to |32) %i = phii32 [0, %for.body], [%inc, %for.body]

--> {0,+,1}<nuw><nsw><%for.body>

27 © 2018 Arm Limited %ll(f 7 '16 %k \| arm

Rewriting Example

p(x) =x3+2x>+3x+ 7

={0,+,1}® + 2*{0,+,1}> + 3x{0,+,1} + 7
={0,+,1,+,6,+,6} + 2*{0,+,1,+,2} + {0,+,3} + 7
={0,+,1,+,6,+,6} + {0,+,2,+,4} + {7,+3}
={0,+,1,+,6,+,6} + {0,+,2,+,4} + {7,+3}
={0,+,3,+,10,+,6} + {7,+,3}

= {7I+I6I+1OI+16}
)5 ©2018 Arm Limited arm

SCEV Rewriting/Folding
(i+1D*=i?+2i+1
> ((+1)2-i2-2i=1

void foo(int *a) {
for (inti =0; i < 100; i++)
ali] = (i+1)*(i+1) - i*i - 2%i;

b

1. *** IR Dump After Loop-Closed SSA Form Pass ***

2. for.body: ; preds = %entry, %for.body

3. %i = phii32[0, %entry], [%add, %for.body]

4. % add = add nuw nsw i32 %i, 1 » %add = i+1

5. %mul = mul nsw i32 %add, %add ; Yomul = (i+1)*(i+1)

6. %mul314 = add nuw i32 %i, 2 ; Y%omul314 = i+2

7. %0 = mul i32 %i, %mul314 5 %0 = i*(i+2) = i*i + 2%i

8. %sub4 = sub i32 %mul, %0 ; Y%osub4 = (i+1)*(i+1) - i*i - 2%i
9. O%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i

10. store i32 %sub4, i32* %arrayidx, align 4, !'tbaa '3
11. %cmp = icmp ult i32 %add, 100
12. br il %cmp, label %for.body, label %for.cond.cleanup

¥

SCEV Rewriting/Folding

2. %add = add nuw nsw i32 %i, 1 » %add = i+1

3. Yomul = mul nsw i32 %add, %add ; Yomul = (i+1)*(i+1)

4. %mul314 = add nuw i32 %i, 2 » %omul314 = i+2

5. %0 = mul i32 %i, %omul314 7 %0 = i*(i+2) = i*i + 2%i

6. %sub4 = sub i32 %mul, %0 ; %osub4d = (i+1)*(i+1) - i*i - 2%i

1. %i = phi i32 [0, %entry], [%add, %for.body] => scev = ({0,+,1}<nuw><nsw><%for.body>)

2. %add = add nuw nsw i32 %i, 1 => scev = ({1,+,1}<nuw><nsw><%for.body>)

3. %omul = mul nsw i32 %add, %add => scev = ({1,+,3,+,2}<%for.body>)

4. %Y%mul314 = add nuw i32 %i, 2 => scev = ({2,+,1}<nuw><nsw><%for.body>)

5. %0 = mul i32 %i, %mul314 => scev = ({0,+,3,+,2}<%for.body>)

6. %sub4 = sub i32 %mul, %0 => scev = (1)

s ©2018 Arm Limited arm

SCEV Rewriting/Folding

void foo(int *a) {
for (inti =0; i < 100; i++)
ali] = (i+1)*(i+1) - i*i - 2*i; // equals 1
b

1. *** IR Dump After Induction Variable Simplification ***
2. for.body:
%i = phi i32 [0, %entry], [%add, %for.body]
%add = add nuw nsw i32 %i, 1
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i
store i32 1, i32* %arrayidx
%exitcond = icmp ne i32 %add, 100
. br il %exitcond, label %for.body, label %for.cond.cleanup

ENIW
NS U

5 ©2018 Arm Limited arm

SCEV Rewriting/Folding

void foo(char a[100][100], char b[100][100], int p, int k) {
inti, j;
for (i =0;i<100; i++)
for (j =0;j <10; j++)
alil[p*j+k] = b[i][j*i];
t

$ opt -analyze -scalar-evolution foo.ll

%i = phi i32 [0, %entry], [%inc9, %for.i.loop.inc]
--> {0,+,1}<nuw><nsw><%for.i.loop.header> U: [0,100) S: [0,100) Exits: 99

%ij = phii32 [0, %for.i.loop.header], [%inc, %for.j.loopbody]
--> {0,+,1}<nuw><nsw><%for.j.loopbody> U: [0,10) S: [0,10) Exits: 9

%index b = getelementptr inbounds [100 x i8], [100 x i81* %b, i32 %i, i32 Yomul

--> | {{%b,+,100}<nsw><%for.i.loop.header>,+,1,+,2}<%for.j.loopbody >

%index_a = getelementptr inbounds [100 x i8], [100 x i8]* %a, i32 %i, i32 %add
--> {{(%k + %a)<nsw>,+,100}<nw><%for.i.loop.header>,+,%p}<nw><%for.j.loopbody>

32 © 2018 Arm Limited

arm

SCEV Expression — Interface

SCEV Analysis APlIs
e getSCEV(Value)
e getAddExpr(Ops)
e getMulExpr(Ops)

SCEV — expression classes

e SCEVConstant, SCEVCastExpr, SCEVAddExpr, SCEVMulExpr, SCEVDivExpr,
SCEVAddRecExpr, SCEVUnknown

Normal Form- Can compare two SCEV pointers for equivalence

,; ©2018 Arm Limited arm

+Loc+>ps+anél Lo+op+
‘Optimizations usmg
‘SCEV -

arm

Natural Loop

Natural Loop — exactly one unique entry point

35 © 2018 Arm Limited

N\

{

/

>

header

lTTue

body

v

body

l

EXit

Exit

arm

Canonical Loop

1. Pre-header

}

preheader
|
» header

lTrue ; E

body l /
v

body Exit
| -,

Exit
s ©2018 Arm Limited arm

Canonical Loop

1. Pre-header
2. Dedicated Exit

3. Single Backedge

37 © 2018 Arm Limited

}

preheader

'

header

lTTue

~ A

body

v

body

DExit

DExit

o=

EXit

‘\T EXit

arm

SCEV As a Serwce —

Loop Strength Reduce
‘Vectorizer, Loop Access

arm

SCEV User - Loop Strength Reduce (LSR)

Hoist loop-invariant computations outside loop

Replace multiply with add

45 ©2018 Arm Limited arm

Loop Strength Reduce

20 © 2018 Arm Limited

Check Loop Form

Collect Chains

Collect Types and Factors

Generate Formulas

Solve and Implement

arm

Loop Strength Reduction

void foo(int *a, int n, int ¢, int k) {
for (inti=3;i<n;i++){
a[c*i] = c*i+k;
b
b

for.body: ; preds = %entry, %for.body
%i = phi i32 [%inc, %for.body], [3, %entry]
%ci = mul nsw i32 %i, %c
%oci_plus_k = add nsw i32 %ci, %k
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %oci
store i32 %ci_plus_k, i32* %arrayidx, align 4, !'tbaa !3
%inc = add nuw nsw i32 %i, 1
%exitcond = icmp eq i32 %inc, %n
br i1 %exitcond, label %for.cond.cleanup, label %for.body

4 © 2018 Arm Limited arm

LSR. Collect Chains

store i32 %ci_plus_k, i32* %arrayidx

%cCi_plus_k = add nsw i32 %oci, %k
--> sceVv(%oci_plus_k) = {(3*%c+%k),+,%c}

void foo(int *a, int n, int ¢, int k) {
for (inti=3;i<n;i++){
a[c*i] = c*i+k;
b
b

%arrayidx = getelementptr inbounds i32, i32* %a, i32 %oci
-->SCEV(%arrayidx) = {(12*%c +%a),+,(4*%cC)}

%ci = mul nsw i32 %i, %c
--> SCEV(%oci) = {(3*%c),+,%cC}

%i = phi i32 [%inc, %for.body], [3, %entry]

—-> scev(%i) = {3,+,1}

4> © 2018 Arm Limited

arm

void foo(int *a, int n, int ¢, int k) {
. for (inti=3;i<n;i++){
LSR. Collect Chains alcHi] = cHitk;
b
J

Collecting IV Chains.
IV Chain#0 Head: (store i32 %ci_plus_k, i32* %arrayidx, align 4, !tbaa !3)
IV={((3 * %c) + %k),+,%cC}<nw><%for.body>

IV Chain#1 Head: (store i32 %ci_plus_k, i32* %arrayidx, align 4, 'tbaa !3)
IV={((12 * %c) + %a)<nsw>,+,(4 * %c)}<nsw><%for.body>

IV Chain#2 Head: (%exitcond = icmp eq i32 %inc, %n)
IV={4,+,1}<nuw><nsw><%for.body>

43 © 2018 Arm Limited arm

void foo(int *a, int n, int ¢, int k) {
o f . . — 3; . ; .
LSR. Collect Fixups and Formula TN = SR 1% me 0] 4
¥
)

reg({((12 * %c) + %a)<nsw>,+,(4 * %c)}<nsw><%for.body>)

LSR Use: Kind=Address of i32 in addrspace(0), Offsets={0}, widest fixup type: i32*
reg({((12 * %c) + %a)<nsw>,+,(4 * %c)}<nsw><%for.body>)
reg((12 * %c)) + 1*reg({%a,+,(4 * %c)}<%for.body>)
reg((12 * %c)) + reg(%a) + 1*reg({0,+,(4 * %c)}<%for.body>)
reg(%a) + 1*reg({(12 * %c),+,(4 * %c)}<nsw><%for.body>)
reg(((12 * %c) + %a)<nsw>) + 1*reg({0,+,(4 * %c)}<%for.body>)
-1*reg({((-12 * %c) + (-1 * %a)),+,(-4 * %c)}<nw><%for.body>)
reg((12 * %c)) + -1*reg({(-1 * %a),+,(-4 * %c)}<%for.body>)
reg((12 * %c)) + reg(%a) + 4*reg({0,+,%c}<%for.body>)
reg((12 * %c)) + reg(%a) + -4*reg({0,+,(-1 * %c)}<%for.body>)
reg((12 * %c)) + reg(%a) + -1*reg({0,+,(-4 * %c)}<%for.body>)
reg(%a) + 4*reg({(3 * %c),+,%c}<nsw><%for.body>)
reg(%a) + -4*reg({(-3 * %c),+,(-1 * %c)}<%for.body>)
reg(%a) + -1*reg({(-12 * %c),+,(-4 * %c)}<nw><%for.body>)
reg(((12 * %c) + %a)<nsw>) + 4*reg({0,+,%c}<%for.body>)
reg(((12 * %c) + %a)<nsw>) + -4*reg({0,+,(-1 * %c)}<%for.body>)
reg(((12 * %c) + %a)<nsw>) + -1*reg({0,+,(-4 * %c)}<%for.body>)

LSR Use: Kind=Basic, Offsets={0}, widest fixup type: i32

4 ©2018 Arm Limited arm

void foo(int *a, int n, int ¢, int k) {
f . t . = 3; " ; -
LSR. Solve — Choose Formula or (nt = 3; < n; 1++) {
¥
s

45

Chosen solution requires 3 instructions 5 regs, with addrec cost 2, plus 1 base add, plus 2 setup cost:

1. LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i32
reg({(-3 + %n),+,-1}<nw><%for.body>)

2. LSR Use: Kind=Address of i32 in addrspace(0), Offsets={0}, widest fixup type: i32*
reg(%a) + BBreg({(3 * %Cc),+,%c} <nsw> <%for.body>)

3. LSR Use: Kind=Basic, Offsets={0}, widest fixup type: i32
reg(%Kk) + 1*reg({(3 * %c),+,%c}<nsw><%for.body>)

© 2018 Arm Limited arm

void foo(int *a, int n, int ¢, int k) {
for (inti=3;i<n;i++){
LSR. Implement alcki] = cHitk;
b
bs
Chosen solution requires 3 instructions 5 regs, with addrec cost 2, plus 1 base add, plus 2 setup cost:
reg(%a) + 4*reg({(3 * %c),+,%c}<nsw><%for.body>)
1. for.body.preheader: ; preds = %entry
2. %0 = add i32 %n, -3
3. %1 = muli32 %c, 3
4. br label %for.body
5. for.body: ; preds = %for.body.preheader, %for.body
6. %lsrivl = phii32 [%1, %for.body.preheader], [%lsr.iv.next2, %for.body]
7. %lsriiv = phi i32 [%0, %for.body.preheader], [%lsr.iv.next, %for.body]
8. %2 = add i32 %Kk, %lsr.ivl
9. Y%scevgep = getelementptr i32, i32* %a, i32 %lsr.ivl
10. store i32 %2, i32* %scevgep
11. %lsr.iv.next = add i32 %lsr.iv, -1
12. %lsr.iv.next2 = add i32 %lsr.ivl, %c
13. %exitcond = icmp eq i32 %lsr.iv.next, O
14. br il %exitcond, label %for.cond.cleanup.loopexit, label %for.body
b

46

© 2018 Arm Limited arm

SCEV User - Dependence Analysis

Strong SIV Test: Dependence(A[c,+stride*i], A[c,+stride*i])

Dependence-distance: d = i’- i = (¢c,-c,)/stride (Eq. 1)

void foo(int *A, int n) {
for (inti =0;i < 100; i++)
A[2*i+1] = A[2*i];
b

testing subscript 0, SIV
src = {0,+,2}<nuw><nsw><%for.body>
dst = {1,+,2}<nuw><nsw><%for.body>
Strong SIV test
Stride = 2, i32
Cl1=0,i32
C2=1,i32
Delta = -1, i32

da analyze - none!

1. bool strongSIVtest(const SCEV *Stride, const SCEV *c1,

2. const SCEV *Delta = SE->getMinusSCEV(c1, c2);

3. // Can we compute distance?
4. if (isa<SCEVConstant>(Delta) &&

b

const SCEV *c2, ...) const {

isa<SCEVConstant>(Stride)) {

47 © 2018 Arm Limited

arm

SCEV User - Vectorizers

Vectorizers — Loop Vectorizer, SLP, Load-Store Vectorizer
Use SCEV for

- Induction variable (step loop-invariant)

- Trip count

- Loop Access Analysis

45 © 2018 Arm Limited arm

Loop Access Analysis

void foo(char *a, unsigned n, unsigned k) {
for (unsigned i = 0; i < n; i++)
alk*i+n*k] = a[k*i];

by
x> L
\a &
N SF A T AN
0 1 2 . k v, N 0\&(\\@‘%_ S
Legend]

: reads from array ‘@’

. writes to array ‘a’

4o © 2018 Arm Limited arm

Loop Access Analysis

void foo(char *a, unsigned n, unsigned k) {
for (unsigned i = 0; i < n; i++)
alk*i+n*k] = a[k*i];
b

READS: SCEV(a[k*i]) = {%a,+,%k}
WRITES: SCEV(a[k*i+n*k) = {%n * %k + %a,+,%k}

* Are strides same?
« If strides are same, loop-invariant. are they - constant (1,2,3,...)? symbolic?

1. LAA: Replacing SCEV: {((%n * %k) + %a)<nsw>,+,%Kk} by: {(%n + %a),+,1}
2. EXTRA-DEBUG:: isSafeDependenceDistance

3. ... BackedgeTakenCount = (-1 + %n)

4.SE.getMinusSCEV(%n, (-1 + %n)) =1

5. Total Dependences: None

SCEV assumption:
Equal predicate: %k ==

5o © 2018 Arm Limited arm

Additional Topics -
‘Miscellaneous SCEV

arm

Trip Count

void foo(int *a, int c) {
for (inti =0; i< 100; i++)
ali] = ¢;

b

entry:
br label %for.body

For.body: ¥ :

%:i.04 = phii32 [0, %entry], [%inc, %for.body]
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i.04 99
store i32 %c, i32* %arrayidx, align 4, !tbaa '3 X
%inc = add nuw nsw i32 %i.04, 1

%exitcond = icmp eq i32 %inc, 100

br il %exitcond, label %for.cond.cleanup, label %for.body

for.cond.cleanup: ¥
ret void

S opt -analyze -scalar-evolution foo.ll
Determining loop execution counts for: @foo
Loop %for.body: backedge-taken count is 99 arm

Trip Count

int foo(int *a, int n, intc) {
int hare , tortoise, step;

for (hare = 0, tortoise = 3, step = 0; hare < tortoise ; hare+=4, tortoise+=2, step+=1);
return step;

b

%tortoise.010 = phii32 [3, %entry], [%6add1, %for.inc]
--> {3,+,2}<nuw><nsw><%for.inc>

Loop %for.inc: Unpredictable backedge-taken count. arm

Multiply Recurrence

void foo(int *a) {
unsigned i = 0;
for (unsigned bit = 1; bit < 0x10000; bit = 2*bit) {
ali] = a[i] & bit; i++;
)
)

// SCEV(bit) > {1, *, 2}

%i= phi i32 [0, %entry], [%inc, %for.body]
--> {0,+,1}<nuw><nsw><%for.body>

%inc = add nuw nsw i32 %i, 1
--> {1,+,1}<nuw><nsw><%for.body>

%mul = shl i32 %bit.010, 1
--> (2 * %bit.010)

54 © 2018 Arm Limited

arm

Conclusion

In this tutorial we learnt —

Construction of SCEV expressions

Simplification of SCEV expressions (rewriting rules)
How passes make use of LLVM SCEV as a service

Limitations of SCEV and LLVM SCEV

55 ©2018 Arm Limited arm

Scalar Evolution:
Change in the Value of
Scalar Variables
Over lIterations of the Loop

Creates and Simplifies Recurrences for ‘Expressions involving Induction Variables’

- unknown compiler engineer

5 ©2018 Arm Limited arm

Thank You!
Danke!
Merci

1Y 19!
HYMED!
Gracias!

Kiitos!
ZALehL| C}
dlc

Arm Limited

