
© 2018 arm

Scalar Evolution -
Demystified

Javed Absar (javed.absar@arm.com)

© 2017 Arm Limited 2 © 2018 Arm Limited

Contents

• Introduction

• Mathematical Framework

• Scalar Evolution (SCEV) Implementation in LLVM

• SCEV as a Service

• Some Additional Topics

• Conclusion

© 2018 arm

Introduction – Scalar
Evolution

© 2017 Arm Limited 4 © 2018 Arm Limited

Scalar Evolution:
Change in the Value of

Scalar Variables
Over Iterations of the

Loop

- unknown compiler engineer

© 2017 Arm Limited 5 © 2018 Arm Limited

Introduction – Scalar Evolution

• Powerful symbolic technique

• LLVM SCEV - Practical implementation

• Passes using SCEV

– Loop strength reduction (LSR)

– Induction Variable Simplify (IndVars)

– Loop Vectorizer, SLP Vectorizer, Load Store Vectorizer, Re-associate nary expr

– Loop Access Analysis, Dependence Analysis, SCEV-AA

© 2017 Arm Limited 6 © 2018 Arm Limited

Introduction – Scalar Evolution

void foo(int *a, int n, int k) {
int t = 0;
for (int i = 0; i < n; i++)

t = t + k;
*a = t;

}

0

2k

k

3k

4k

(n-1)k
nk

t = 0

t = t+k

t = ?

© 2017 Arm Limited 7 © 2018 Arm Limited

Introduction – Scalar Evolution
1. for.body:
2. %i = phi i32 [%inc, %for.body], [0, %for.body.preheader]
3. %t = phi i32 [%tk, %for.body], [0, %for.body.preheader]
4. %tk = add nsw i32 %t, %k
5. %inc = add nuw nsw i32 %i, 1
6. %cmp = icmp slt i32 %inc, %n
7. br i1 %cmp, label %for.body, label %for.cond.cleanup
…
for.cond.cleanup:

%tk.final = phi i32 [0, %entry], [%tk, %for.body]
8. store i32 %tk.final, i32* %a
…

*** IR Dump After Induction Variable Simplification ***
…
1’. for.cond.cleanup.loopexit:
2’. %tk.final = mul i32 %n, %k
3’. store i32 %tk.final, i32* %a

© 2017 Arm Limited 8 © 2018 Arm Limited

Introduction – Scalar Evolution

int foo(int *a, int n, int k) {
for (int i = 0; i < n; i++)
a[i] = i*k;

}

0

3k

(n-1)k

k

2k

a[0]

a[3]

a[n-1]

a[1]

a[2]

© 2017 Arm Limited 9 © 2018 Arm Limited

Introduction – Scalar Evolution

1’. *** IR Dump After Loop Strength Reduction ***
2’. for.body:
3’. %IV_IK = phi i32 [0, %for.body.preheader], [%IV_IK_plus_K, %for.body]
4’. store i32 %IV_IK, i32* %lsr.iv
5’. %lsr.iv.next = add i32 %lsr.iv7, -1
6’. %IV_IK_plus_K = add i32 %IV_IK, %k

int foo(int *a, int n, int k) {
for (int i = 0; i < n; i++)
a[i] = i*k;

}

1. *** IR Dump After Canonicalize natural loops ***
2. for.body:
3. %i = phi i32 [%inc, %for.body], [0, %for.body.preheader]
4. %ik = mul nsw i32 %i, %k
5. %arrayidx = getelementptr inbounds i32, i32* %a, i32 %i
6. store i32 %ik, i32* %arrayidx
7. …

© 2018 arm

Mathematical
Framework - Chain of
Recurrences

© 2017 Arm Limited 11 © 2018 Arm Limited

Induction Variable

Basic Induction Variable (BIV):

• Increases or decreases by a constant on each iteration of the loop

Generalized Induction Variable (GIV)

• Update value is not constant

• Dependent on other BIVs/GIVs (linear, non-linear), multiple update

© 2017 Arm Limited 12 © 2018 Arm Limited

Chain of Recurrences

Formalism to analyse expressions in BIV and GIV

Express as Recurrences

Factorial

n! = 1 x 2 x … n n! = (n-1)! x n

𝑓 𝑛 = ෑ

𝑘=1

𝑛

𝑘 . 𝑓 𝑛 = 𝑓 𝑛 − 1 ∗ 𝑛



© 2017 Arm Limited 13 © 2018 Arm Limited

Basic Recurrences

𝑓 𝑖 =
𝑘0 if 𝑖 = 0

𝑓 𝑖 − 1 + 𝑘1 if 𝑖 > 0

𝑏𝑎𝑠𝑖𝑐 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 = 𝑘0, +, 𝑘1 𝑖

f = k0

f = f + k1

… = f

k0, k1 are loop-invariants

int f = k0;
for (int i = 0; i < n; i++) {

… = f ;
f = f + k1;

}

© 2017 Arm Limited 14 © 2018 Arm Limited

Basic Recurrences

𝑓 𝑖 =
3 if 𝑖 = 0
𝑓 𝑖 − 1 + 7 if 𝑖 > 0

𝐵𝑅 = 3,+, 7 i

f = 3

f = f + 7

… = f

Generates: 3 10 17 24 31 …

int f = 3;
for (int i = 0; i < n; i++) {

… = f ;
f = f + 7;

}

© 2017 Arm Limited 15 © 2018 Arm Limited

Basic Recurrence – Example

int foo(int *a, int n, int k){
for (int i = 0; i < n; i++)
a[i] = i*k;

}

1. Printing analysis 'Scalar Evolution Analysis' for function 'foo':
2. Classifying expressions for: @foo
3. …
4. %mul = mul nsw i32 %i, %k
5. --> {0,+,%k}<%for.body> Exits: ((-1 + %n) * %k)
6. …

$ opt -analyze -scalar-evolution foo.ll

© 2017 Arm Limited 16 © 2018 Arm Limited

Chain Recurrences

𝑓0 𝑖 =
1 if 𝑖 = 0
𝑓0 𝑖 − 1 + 𝑓1 𝑖 − 1 if 𝑖 > 0

𝐶𝑅 = {1, +, {3, +, 7}}

𝑓1 𝑖 =
3 if 𝑖 = 0
𝑓1 𝑖 − 1 + 7 if 𝑖 > 0

𝐶𝑅 = {1, +, {3, +, 7}}  {1,+,3,+,7}

𝑓1 𝑖

𝑓0 𝑖

© 2017 Arm Limited 17 © 2018 Arm Limited

Chain Recurrences

for (int x = 0; x < n; x++)
p[x] = x*x*x + 2*x*x + 3*x + 7;

0 1 2 3 4 5x

7 13 29 61 115 197p(x)

- 6 16 32 54 82

- - 10 16 22 282

- - - 6 6 63

𝐶𝑅 = 7,+, 6,+, 10, +, 6

© 2017 Arm Limited 18 © 2018 Arm Limited

Chain Recurrences
𝐶𝑅 = 7,+, 6,+, 10, +, 6

𝑓0 𝑖 𝑓1 𝑖 𝑓2 𝑖 𝑓3 𝑖

7 13 29 61

𝑓0 0 𝑓0 1 𝑓0 2 𝑓0 3

7 6 10 6

+6 +10 +6

13 16 16 6

+16 +16 +6

29 32 22 6

+32 +22 +6

61 54 28 6

𝑝 𝑥 =

© 2017 Arm Limited 19 © 2018 Arm Limited

Chain of Recurrences

void foo(int *p, int n){
for(int x = 0; x < n; x++)

p[x] = x*x*x + 2*x*x + 3*x + 7;
}

void foo(int *p, int n) {
int t0 = 7;
int t1 = 6;
int t2 = 10;
for(int x = 0; x < n; x++) {
p[x] = t0;
t0 = t0 + t1;
t1 = t1 + t2;
t2 = t2 + 6;
//p[x] = x*x*x + 2*x*x + 3*x + 7;

}
}

IV Chain#0 Head: (store i32 %add6, i32* %arrayidx.) SCEV={7,+,6,+,10,+,6}<%for.body>

© 2017 Arm Limited 20 © 2018 Arm Limited

Chain of Recurrences - Synopsis

for (i=0; i< n; i++)
… = i*k; {0,+,%k}i

SCEV Analysis

© 2018 arm

SCEV Rewriting Rules
and Implementation in
LLVM

© 2017 Arm Limited 22 © 2018 Arm Limited

SCEV Rewriting/Folding

%i = phi i32 [%inc, %for.body], [0, %entry]

--> {0,+,1}<nuw><nsw><%for.body

%i = phi i32 [0, %entry], [%inc, %for.body]
.
.
.

%inc = add nuw nsw i32 %i, 1

void foo(int *a, short k, int p, int n) {
for (int i = 0; i < n; i++)
a[i] = (k+i)*p;

}

© 2017 Arm Limited 23 © 2018 Arm Limited

SCEV Rewriting/Folding

i: 7,+, 3 j: 1,+, 1

𝑘 = 𝑖 + 𝑗 = 7 + 1,+, 3 + 1 = {8,+4}

7 1

10 2

13 3

𝑒,+, 𝑓 + 𝑔,+, ℎ ⇒ 𝑒 + 𝑔,+, 𝑓 + ℎ

k=i+j

8

12

16

© 2017 Arm Limited 24 © 2018 Arm Limited

SCEV Rewriting/Folding

Expression Rewrite Example

𝐺 + 𝑒,+, 𝑓 ⇒ 𝐺 + 𝑒,+, 𝑓 12 + 7,+, 3 ⇒ 19,+, 3

𝐺 ∗ 𝑒, +, 𝑓 ⇒ 𝐺 ∗ 𝑒,+, 𝐺 ∗ 𝑓 12 ∗ 7,+, 3 ⇒ 84,+, 36

𝑒,+, 𝑓 + 𝑔,+, ℎ ⇒ 𝑒 + 𝑔,+, 𝑓 + ℎ 7,+, 3 + 1,+, 1 ⇒ 8,+, 4

𝑒, +, 𝑓 ∗ 𝑔,+, ℎ
⇒ 𝑒 ∗ 𝑔,+,

𝑒 ∗ ℎ + 𝑓 ∗ 𝑔 + 𝑓 ∗ ℎ,
+, 2 ∗ 𝑓 ∗ ℎ

0,+, 1 ∗ 0,+, 1 ⇒ 0,+, 1, +, 2

© 2017 Arm Limited 25 © 2018 Arm Limited

© 2017 Arm Limited 26 © 2018 Arm Limited

SCEV Rewriting/Folding
void foo(int *a, short k, int p, int n) {

for (int i = 0; i < n; i++)
a[i] = (k+i)*p;

}

1. for.body.lr.ph: ; preds = %entry
2. %K = sext i16 %k to i32
3. br label %for.body

4. for.body: ; preds = %for.body, %for.body.lr.ph
5. %i = phi i32 [0, %for.body.lr.ph], [%inc, %for.body]
6. %add = add nsw i32 %i, %K
7. %mul = mul nsw i32 %add, %p
8. %arrayidx = getelementptr inbounds i32, i32* %a, i32 %i
9. store i32 %mul, i32* %arrayidx
10. %inc = add nuw nsw i32 %i, 1
11. %exitcond = icmp eq i32 %inc, %n
12. br i1 %exitcond, label %for.cond.cleanup, label %for.body

© 2017 Arm Limited 27 © 2018 Arm Limited

SCEV Rewriting/Folding

k

K

i

+ p

*

%mul = mul nsw i32 %add, %p

--> {%K * %p,+, %p}

%add = add nsw i32 %i, %K

--> {%K,+,1}

%K = sext i16 %k to i32

--> (sext i16 %k to i32) %i = phi i32 [0, %for.body], [%inc, %for.body]

--> {0,+,1}<nuw><nsw><%for.body>

%k --> i16 %k

%p --> i32 %p

void foo(int *a, short k, int p, int n) {
for (int i = 0; i < n; i++)
a[i] = (k+i)*p;

}

© 2017 Arm Limited 28 © 2018 Arm Limited

Rewriting Example

𝑝 𝑥 = 𝑥3 + 2𝑥2 + 3𝑥 + 7

= {0,+, 1}3 + 2 ∗ 0,+, 1 2 + 3 ∗ 0,+, 1 + 7

= {0,+,1,+,6,+,6} + 2*{0,+,1,+,2} + {0,+,3} + 7

= {0,+,1,+,6,+,6} + {0,+,2,+,4} + {7,+,3}

= {0,+,1,+,6,+,6} + {0,+,2,+,4} + {7,+,3}

= {0,+,3,+,10,+,6} + {7,+,3}

= {7,+,6,+10,+,6}

© 2017 Arm Limited 29 © 2018 Arm Limited

SCEV Rewriting/Folding

void foo(int *a) {
for (int i = 0; i < 100; i++)
a[i] = (i+1)*(i+1) - i*i - 2*i;

}

1. *** IR Dump After Loop-Closed SSA Form Pass ***
2. for.body: ; preds = %entry, %for.body
3. %i = phi i32 [0, %entry], [%add, %for.body]
4. %add = add nuw nsw i32 %i, 1 ; %add = i+1
5. %mul = mul nsw i32 %add, %add ; %mul = (i+1)*(i+1)
6. %mul314 = add nuw i32 %i, 2 ; %mul314 = i+2
7. %0 = mul i32 %i, %mul314 ; %0 = i*(i+2) = i*i + 2*i
8. %sub4 = sub i32 %mul, %0 ; %sub4 = (i+1)*(i+1) - i*i - 2*i
9. %arrayidx = getelementptr inbounds i32, i32* %a, i32 %i
10. store i32 %sub4, i32* %arrayidx, align 4, !tbaa !3
11. %cmp = icmp ult i32 %add, 100
12. br i1 %cmp, label %for.body, label %for.cond.cleanup
}

(𝑖 + 1)2= 𝑖2 + 2𝑖 + 1

⇒ (𝑖 + 1)2 −𝑖2 − 2𝑖 = 1

© 2017 Arm Limited 30 © 2018 Arm Limited

SCEV Rewriting/Folding
2. %add = add nuw nsw i32 %i, 1 ; %add = i+1
3. %mul = mul nsw i32 %add, %add ; %mul = (i+1)*(i+1)
4. %mul314 = add nuw i32 %i, 2 ; %mul314 = i+2
5. %0 = mul i32 %i, %mul314 ; %0 = i*(i+2) = i*i + 2*i
6. %sub4 = sub i32 %mul, %0 ; %sub4 = (i+1)*(i+1) - i*i - 2*i

1. %i = phi i32 [0, %entry], [%add, %for.body] => scev = ({0,+,1}<nuw><nsw><%for.body>)

2. %add = add nuw nsw i32 %i, 1 => scev = ({1,+,1}<nuw><nsw><%for.body>)

3. %mul = mul nsw i32 %add, %add => scev = ({1,+,3,+,2}<%for.body>)

4. %mul314 = add nuw i32 %i, 2 => scev = ({2,+,1}<nuw><nsw><%for.body>)

5. %0 = mul i32 %i, %mul314 => scev = ({0,+,3,+,2}<%for.body>)

6. %sub4 = sub i32 %mul, %0 => scev = (1)

© 2017 Arm Limited 31 © 2018 Arm Limited

SCEV Rewriting/Folding

1. *** IR Dump After Induction Variable Simplification ***
2. for.body:
3. %i = phi i32 [0, %entry], [%add, %for.body]
4. %add = add nuw nsw i32 %i, 1
5. %arrayidx = getelementptr inbounds i32, i32* %a, i32 %i
6. store i32 1, i32* %arrayidx
7. %exitcond = icmp ne i32 %add, 100
8. br i1 %exitcond, label %for.body, label %for.cond.cleanup

void foo(int *a) {
for (int i = 0; i < 100; i++)
a[i] = (i+1)*(i+1) - i*i - 2*i; // equals 1

}

© 2017 Arm Limited 32 © 2018 Arm Limited

SCEV Rewriting/Folding

void foo(char a[100][100], char b[100][100], int p, int k) {
int i, j;
for (i = 0; i < 100; i++)
for (j = 0; j < 10; j++)

a[i][p*j+k] = b[i][j*j];
}

%i = phi i32 [0, %entry], [%inc9, %for.i.loop.inc]
--> {0,+,1}<nuw><nsw><%for.i.loop.header> U: [0,100) S: [0,100) Exits: 99

%j = phi i32 [0, %for.i.loop.header], [%inc, %for.j.loopbody]
--> {0,+,1}<nuw><nsw><%for.j.loopbody> U: [0,10) S: [0,10) Exits: 9

%index_b = getelementptr inbounds [100 x i8], [100 x i8]* %b, i32 %i, i32 %mul
--> {{%b,+,100}<nsw><%for.i.loop.header>,+,1,+,2}<%for.j.loopbody>

%index_a = getelementptr inbounds [100 x i8], [100 x i8]* %a, i32 %i, i32 %add
--> {{(%k + %a)<nsw>,+,100}<nw><%for.i.loop.header>,+,%p}<nw><%for.j.loopbody>

$ opt -analyze -scalar-evolution foo.ll

© 2017 Arm Limited 33 © 2018 Arm Limited

SCEV Expression – Interface

SCEV Analysis APIs

• getSCEV(Value)

• getAddExpr(Ops)

• getMulExpr(Ops)

SCEV – expression classes

• SCEVConstant, SCEVCastExpr, SCEVAddExpr, SCEVMulExpr, SCEVDivExpr,
SCEVAddRecExpr, SCEVUnknown

Normal Form- Can compare two SCEV pointers for equivalence

© 2018 arm

Loops and Loop
Optimizations using
SCEV

© 2017 Arm Limited 35 © 2018 Arm Limited

Natural Loop

Natural Loop – exactly one unique entry point

header

body

body

True

Exit

Exit

© 2017 Arm Limited 36 © 2018 Arm Limited

Canonical Loop

1. Pre-header

header

body

body

True

Exit

Exit

preheader

© 2017 Arm Limited 37 © 2018 Arm Limited

Canonical Loop

header

body

body

True

DExit

DExit

preheader

Exit

Exit

1. Pre-header

2. Dedicated Exit

3. Single Backedge

© 2018 arm

SCEV As a Service –

Loop Strength Reduce,
Vectorizer, Loop Access
Analysis

© 2017 Arm Limited 39 © 2018 Arm Limited

SCEV User - Loop Strength Reduce (LSR)

Hoist loop-invariant computations outside loop

Replace multiply with add

© 2017 Arm Limited 40 © 2018 Arm Limited

Loop Strength Reduce

Check Loop Form

Collect Chains

Collect Types and Factors

Generate Formulas

Solve and Implement

© 2017 Arm Limited 41 © 2018 Arm Limited

Loop Strength Reduction

void foo(int *a, int n, int c, int k) {
for (int i = 3; i < n; i++) {
a[c*i] = c*i+k;

}
}

for.body: ; preds = %entry, %for.body
%i = phi i32 [%inc, %for.body], [3, %entry]
%ci = mul nsw i32 %i, %c
%ci_plus_k = add nsw i32 %ci, %k
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %ci
store i32 %ci_plus_k, i32* %arrayidx, align 4, !tbaa !3
%inc = add nuw nsw i32 %i, 1
%exitcond = icmp eq i32 %inc, %n
br i1 %exitcond, label %for.cond.cleanup, label %for.body

}

© 2017 Arm Limited 42 © 2018 Arm Limited

LSR. Collect Chains

%i = phi i32 [%inc, %for.body], [3, %entry]

--> scev(%i) = {3,+,1}

store i32 %ci_plus_k, i32* %arrayidx

%ci_plus_k = add nsw i32 %ci, %k

--> scev(%ci_plus_k) = {(3*%c+%k),+,%c}

%ci = mul nsw i32 %i, %c
--> SCEV(%ci) = {(3*%c),+,%c}

%arrayidx = getelementptr inbounds i32, i32* %a, i32 %ci
-->SCEV(%arrayidx) = {(12*%c +%a),+,(4*%c)}

void foo(int *a, int n, int c, int k) {
for (int i = 3; i < n; i++) {
a[c*i] = c*i+k;

}
}

© 2017 Arm Limited 43 © 2018 Arm Limited

LSR. Collect Chains

Collecting IV Chains.
IV Chain#0 Head: (store i32 %ci_plus_k, i32* %arrayidx, align 4, !tbaa !3)

IV={((3 * %c) + %k),+,%c}<nw><%for.body>

IV Chain#1 Head: (store i32 %ci_plus_k, i32* %arrayidx, align 4, !tbaa !3)
IV={((12 * %c) + %a)<nsw>,+,(4 * %c)}<nsw><%for.body>

IV Chain#2 Head: (%exitcond = icmp eq i32 %inc, %n)
IV={4,+,1}<nuw><nsw><%for.body>

void foo(int *a, int n, int c, int k) {
for (int i = 3; i < n; i++) {
a[c*i] = c*i+k;

}
}

© 2017 Arm Limited 44 © 2018 Arm Limited

LSR. Collect Fixups and Formula

reg({((12 * %c) + %a)<nsw>,+,(4 * %c)}<nsw><%for.body>)

LSR Use: Kind=Address of i32 in addrspace(0), Offsets={0}, widest fixup type: i32*
reg({((12 * %c) + %a)<nsw>,+,(4 * %c)}<nsw><%for.body>)
reg((12 * %c)) + 1*reg({%a,+,(4 * %c)}<%for.body>)
reg((12 * %c)) + reg(%a) + 1*reg({0,+,(4 * %c)}<%for.body>)
reg(%a) + 1*reg({(12 * %c),+,(4 * %c)}<nsw><%for.body>)
reg(((12 * %c) + %a)<nsw>) + 1*reg({0,+,(4 * %c)}<%for.body>)
-1*reg({((-12 * %c) + (-1 * %a)),+,(-4 * %c)}<nw><%for.body>)
reg((12 * %c)) + -1*reg({(-1 * %a),+,(-4 * %c)}<%for.body>)
reg((12 * %c)) + reg(%a) + 4*reg({0,+,%c}<%for.body>)
reg((12 * %c)) + reg(%a) + -4*reg({0,+,(-1 * %c)}<%for.body>)
reg((12 * %c)) + reg(%a) + -1*reg({0,+,(-4 * %c)}<%for.body>)
reg(%a) + 4*reg({(3 * %c),+,%c}<nsw><%for.body>)
reg(%a) + -4*reg({(-3 * %c),+,(-1 * %c)}<%for.body>)
reg(%a) + -1*reg({(-12 * %c),+,(-4 * %c)}<nw><%for.body>)
reg(((12 * %c) + %a)<nsw>) + 4*reg({0,+,%c}<%for.body>)
reg(((12 * %c) + %a)<nsw>) + -4*reg({0,+,(-1 * %c)}<%for.body>)
reg(((12 * %c) + %a)<nsw>) + -1*reg({0,+,(-4 * %c)}<%for.body>)

LSR Use: Kind=Basic, Offsets={0}, widest fixup type: i32

void foo(int *a, int n, int c, int k) {
for (int i = 3; i < n; i++) {
a[c*i] = c*i+k;

}
}

© 2017 Arm Limited 45 © 2018 Arm Limited

LSR. Solve – Choose Formula

Chosen solution requires 3 instructions 5 regs, with addrec cost 2, plus 1 base add, plus 2 setup cost:

1. LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i32
reg({(-3 + %n),+,-1}<nw><%for.body>)

2. LSR Use: Kind=Address of i32 in addrspace(0), Offsets={0}, widest fixup type: i32*
reg(%a) + 4*reg({(3 * %c),+,%c}<nsw><%for.body>)

3. LSR Use: Kind=Basic, Offsets={0}, widest fixup type: i32
reg(%k) + 1*reg({(3 * %c),+,%c}<nsw><%for.body>)

void foo(int *a, int n, int c, int k) {
for (int i = 3; i < n; i++) {
a[c*i] = c*i+k;

}
}

© 2017 Arm Limited 46 © 2018 Arm Limited

LSR. Implement

1. for.body.preheader: ; preds = %entry
2. %0 = add i32 %n, -3
3. %1 = mul i32 %c, 3
4. br label %for.body

5. for.body: ; preds = %for.body.preheader, %for.body
6. %lsr.iv1 = phi i32 [%1, %for.body.preheader], [%lsr.iv.next2, %for.body]
7. %lsr.iv = phi i32 [%0, %for.body.preheader], [%lsr.iv.next, %for.body]
8. %2 = add i32 %k, %lsr.iv1
9. %scevgep = getelementptr i32, i32* %a, i32 %lsr.iv1

10. store i32 %2, i32* %scevgep
11. %lsr.iv.next = add i32 %lsr.iv, -1
12. %lsr.iv.next2 = add i32 %lsr.iv1, %c
13. %exitcond = icmp eq i32 %lsr.iv.next, 0
14. br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body
}

Chosen solution requires 3 instructions 5 regs, with addrec cost 2, plus 1 base add, plus 2 setup cost:
reg(%a) + 4*reg({(3 * %c),+,%c}<nsw><%for.body>)

void foo(int *a, int n, int c, int k) {
for (int i = 3; i < n; i++) {
a[c*i] = c*i+k;

}
}

© 2017 Arm Limited 47 © 2018 Arm Limited

SCEV User - Dependence Analysis

Strong SIV Test: Dependence(A[c1+stride*i], A[c2+stride*i])

Dependence-distance: d = i’- i = (c1-c2)/stride (Eq. 1)

void foo(int *A, int n) {
for (int i = 0; i < 100; i++)
A[2*i+1] = A[2*i];

}

testing subscript 0, SIV
src = {0,+,2}<nuw><nsw><%for.body>
dst = {1,+,2}<nuw><nsw><%for.body>

Strong SIV test
Stride = 2, i32
C1 = 0, i32
C2 = 1, i32
Delta = -1, i32
.

da analyze - none!

1. bool strongSIVtest(const SCEV *Stride, const SCEV *c1,
const SCEV *c2, ...) const {

...
2. const SCEV *Delta = SE->getMinusSCEV(c1, c2);

3. // Can we compute distance?
4. if (isa<SCEVConstant>(Delta) &&

isa<SCEVConstant>(Stride)) { ….
}

© 2017 Arm Limited 48 © 2018 Arm Limited

SCEV User - Vectorizers

Vectorizers – Loop Vectorizer, SLP, Load-Store Vectorizer

Use SCEV for

- Induction variable (step loop-invariant)

- Trip count

- Loop Access Analysis

© 2017 Arm Limited 49 © 2018 Arm Limited

Loop Access Analysis

void foo(char *a, unsigned n, unsigned k) {
for (unsigned i = 0; i < n; i++)
a[k*i+n*k] = a[k*i];

}

0 1 2 .. k

: reads from array ‘a’

: writes to array ‘a’

Legend

© 2017 Arm Limited 50 © 2018 Arm Limited

Loop Access Analysis

void foo(char *a, unsigned n, unsigned k) {
for (unsigned i = 0; i < n; i++)
a[k*i+n*k] = a[k*i];

}

READS: SCEV(a[k*i]) = {%a,+,%k}
WRITES: SCEV(a[k*i+n*k) = {%n * %k + %a,+,%k}

1. LAA: Replacing SCEV: {((%n * %k) + %a)<nsw>,+,%k} by: {(%n + %a),+,1}

2. EXTRA-DEBUG:: isSafeDependenceDistance

3.BackedgeTakenCount = (-1 + %n)

4. ….SE.getMinusSCEV(%n, (-1 + %n)) = 1

5. Total Dependences: None
SCEV assumption:
Equal predicate: %k == 1

• Are strides same?
• If strides are same, loop-invariant. are they – constant (1,2,3,…)? symbolic?

© 2018 arm

Additional Topics -
Miscellaneous SCEV

© 2017 Arm Limited 52 © 2018 Arm Limited

Trip Count
void foo(int *a, int c) {

for (int i = 0; i < 100; i++)
a[i] = c;

}

br label %for.body

%i.04 = phi i32 [0, %entry], [%inc, %for.body]
%arrayidx = getelementptr inbounds i32, i32* %a, i32 %i.04
store i32 %c, i32* %arrayidx, align 4, !tbaa !3
%inc = add nuw nsw i32 %i.04, 1
%exitcond = icmp eq i32 %inc, 100
br i1 %exitcond, label %for.cond.cleanup, label %for.body

ret void

entry:

For.body:

for.cond.cleanup:

$ opt -analyze -scalar-evolution foo.ll

Determining loop execution counts for: @foo

Loop %for.body: backedge-taken count is 99

99

© 2017 Arm Limited 53 © 2018 Arm Limited

Trip Count

int foo(int *a, int n, int c) {
int hare , tortoise, step;
for (hare = 0, tortoise = 3, step = 0; hare < tortoise ; hare+=4, tortoise+=2, step+=1);
return step;

}

%tortoise.010 = phi i32 [3, %entry], [%add1, %for.inc]

--> {3,+,2}<nuw><nsw><%for.inc>

.

Loop %for.inc: Unpredictable backedge-taken count.

0 1 2 3 4 5 6 7 8 9 10 11

© 2017 Arm Limited 54 © 2018 Arm Limited

Multiply Recurrence

void foo(int *a) {
unsigned i = 0;
for (unsigned bit = 1; bit < 0x10000; bit = 2*bit) {
a[i] = a[i] & bit; i++;

}
}

%i= phi i32 [0, %entry], [%inc, %for.body]
--> {0,+,1}<nuw><nsw><%for.body>

.
%inc = add nuw nsw i32 %i, 1
--> {1,+,1}<nuw><nsw><%for.body>

%mul = shl i32 %bit.010, 1
--> (2 * %bit.010)

// SCEV(bit)  {1, *, 2}

© 2017 Arm Limited 55 © 2018 Arm Limited

Conclusion

In this tutorial we learnt –

Construction of SCEV expressions

Simplification of SCEV expressions (rewriting rules)

How passes make use of LLVM SCEV as a service

Limitations of SCEV and LLVM SCEV

© 2017 Arm Limited 56 © 2018 Arm Limited

Scalar Evolution:
Change in the Value of

Scalar Variables
Over Iterations of the Loop

- unknown compiler engineer

Creates and Simplifies Recurrences for ‘Expressions involving Induction Variables’

0{1,+,3,+2}

{1,+1}
{0,+2}

4
2

6
{1,+1}

5757

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

© 2017 Arm Limited

