[go: up one dir, main page]

Skip to main content
Log in

Size Dependency in the Axial Postbuckling Behavior of Nanopanels Made of Functionally Graded Material Considering Surface Elasticity

  • Research Article - Mechanical Engineering
  • Published:
View saved research
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Size-dependent modeling and analysis for the nonlinear postbuckling response of functionally graded (FG) cylindrical nanopanels under axial compressive load are presented based on the surface elasticity theory. The non-classical formulations are developed on the basis of the Gurtin–Murdoch elasticity theory within the framework of the classical shell theory. In order to capture the large deflections associated with the postbuckling regime, the geometrical nonlinearity is considered in von Karman sense. The material properties are supposed to be graded across the panel thickness in accordance with a simple power law function of the volume fractions of the silicon and aluminum constituents with considering the physical neutral plane position. To satisfy the balance conditions on the free surface layers, it is assumed that the bulk normal stress along the thickness direction varies linearly between those values of surface stress components at the inner and outer layers. A boundary layer theory of shell buckling is extended to the case of size-dependent FG nanopanels, and then, a singular perturbation technique is put to use to solve the nonlinear problem. It is displayed that due to the stiffening influence of surface effects, the depth of the postbuckling regime for FG nanopanels with higher material gradient index decreases, as for the metal-rich nanopanel, the snap-through phenomenon approximately diminishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu, Y.; Du, H.; Zhang, S.: Functionally graded TiN/TiNi shape memory alloy films. Mater. Lett. 57, 2995–2999 (2003)

    Article  Google Scholar 

  2. Craciunescu, C.M.; Wuttig, M.: New ferromagnetic and functionally graded shape memory alloys. J. Optoelectron. Adv. Mater. 5, 139–146 (2003)

    Google Scholar 

  3. Abbasnejad, B.; Rezazadeh, G.; Shabani, R.: Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mech. Solida Sin. 26, 427–440 (2013)

    Article  Google Scholar 

  4. Witvrouw, A.; Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 8, 255–260 (2005)

    Article  Google Scholar 

  5. Lee, Z.; Ophus, C.; Fischer, L.M.; Nelson-Fitzpatrick, N.; Westra, K.L.; Evoy, S.; et al.: Metallic NEMS components fabricated from nanocomposite Al-Mo films. Nanotechnology 17, 3063–3070 (2006)

    Article  Google Scholar 

  6. Shen, H.-S.: Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environment. Mech. Res. Commun. 54, 83–95 (2013)

    Article  Google Scholar 

  7. Sahmani, S.; Bahrami, M.; Ansari, R.: Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Compos. Struct. 110, 219–230 (2014)

    Article  Google Scholar 

  8. Wang, Y.-G.; Lin, W.-H.; Liu, N.: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl. Math. Model. 39, 117–127 (2015)

    Article  MathSciNet  Google Scholar 

  9. Lou, J.; He, L.; Du, J.; Wu, H.: Buckling and post-buckling analyses of piezoelectric hybrid microplates subject to thermo-electro-mechanical loads based on the modified couple stress theory. Compos. Struct. 153, 332–344 (2016)

    Article  Google Scholar 

  10. Sahmani, S.; Aghdam, M.M.: Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Compos. Struct. 166, 104–113 (2017)

    Article  Google Scholar 

  11. Streitz, F.H.; Cammarata, R.C.; Sieradzki, K.: Surface stress effects on elastic properties, I. Thin metal films. Phys. Rev. B 49, 10699–10706 (1994)

    Article  Google Scholar 

  12. Dingreville, R.; Qu, J.; Cherkaoui, M.: Surface free energy and its effects on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827–1954 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1. Longmans-Green, London (1906)

    MATH  Google Scholar 

  14. Fischer, F.D.; Waitz, T.; Vollath, D.; Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Progr. Mater. Sci. 53, 481–527 (2008)

    Article  Google Scholar 

  15. Gurtin, M.E.; Murdoch, A.I.: A continuum theory of elastic material surface. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gurtin, M.E.; Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  17. Wang, G.F.; Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  18. Luo, J.; Xiao, Z.M.: Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. Int. J. Eng. Sci. 47, 883–893 (2009)

    Article  Google Scholar 

  19. Zhao, X.J.; Rajapakse, R.K.N.D.: Analytical solutions for a surface loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433–1444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z.Q.; Zhao, Y.P.; Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  Google Scholar 

  21. Chiu, M.S.; Chen, T.: Bending and resonance behavior of nanowires based on Timoshenko beam theory with high-order surface stress effects. Phys. E 54, 149–156 (2013)

    Article  Google Scholar 

  22. Ansari, R.; Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49, 1244–1255 (2011)

    Article  Google Scholar 

  23. Ansari, R.; Sahmani, S.: Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49, 1204–1215 (2011)

    Article  MathSciNet  Google Scholar 

  24. Wang, L.: Surface effect on buckling configuration of nanobeams containing internal flowing fluid: a nonlinear analysis. Phys. E 44, 808–812 (2012)

    Article  Google Scholar 

  25. Gao, F.; Cheng, Q.; Luo, J.: Mechanics of nanowire buckling on elastomeric substrates with consideration of surface stress effects. Phys. E 64, 72–77 (2014)

    Article  Google Scholar 

  26. Sahmani, S.; Bahrami, M.; Ansari, R.: Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Compos. Struct. 116, 552–561 (2014)

    Article  Google Scholar 

  27. Shaat, M.; Mahmoud, F.F.; Gao, X.L.; Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Article  Google Scholar 

  28. Sahmani, S.; Bahrami, M.; Aghdam, M.M.; Ansari, R.: Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos. Struct. 118, 149–158 (2014)

    Article  Google Scholar 

  29. Liang, X.; Hu, S.; Shen, S.: Surface effects on the post-buckling of piezoelectric nanowires. Phys. E 69, 61–64 (2015)

    Article  Google Scholar 

  30. Sahmani, S.; Aghdam, M.M.; Bahrami, M.: On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos. Struct. 121, 377–385 (2015)

    Article  Google Scholar 

  31. Sahmani, S.; Bahrami, M.; Aghdam, M.M.; Ansari, R.: Postbuckling behavior of circular higher-order shear deformable nanoplates including surface energy effects. Appl. Math. Model. 39, 3678–3689 (2015)

    Article  MathSciNet  Google Scholar 

  32. Fares, M.E.; Elmarghany, M.K.; Atta, D.: An Efficient and simple refined theory for bending and vibration of functionally graded plates. Compos. Struct. 91, 296–305 (2009)

    Article  Google Scholar 

  33. Donnell, L.H.: Beam, Plates and Shells. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  34. Shen, H.-S.: Postbuckling analysis of axially loaded functionally graded cylindrical panels in thermal environments. Int. J. Solids Struct. 39, 5991–6010 (2002)

    Article  MATH  Google Scholar 

  35. Shen, H.-S.; Xiang, Y.: Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations. Compos. Struct. 123, 383–392 (2015)

    Article  Google Scholar 

  36. Shen, H.-S.: Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments. Eng. Struct. 122, 174–183 (2016)

    Article  Google Scholar 

  37. Shen, H.-S.; Wang, H.: Postbuckling of pressure-loaded FGM doubly curved panels resting on elastic foundations in thermal environments. Thin-Walled Struct. 100, 124–133 (2016)

    Article  Google Scholar 

  38. Sahmani, S.; Bahrami, M.; Aghdam, M.M.: Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. Int. J. Eng. Sci. 99, 92–106 (2016)

    Article  MathSciNet  Google Scholar 

  39. Sahmani, S.; Aghdam, M.M.; Bahrami, M.: Size-dependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures. Int. J. Mech. Sci. 107, 170–179 (2016)

    Article  Google Scholar 

  40. Sahmani, S.; Aghdam, M.M.; Akbarzadeh, A.H.: Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load. Mater. Des. 105, 341–351 (2016)

    Article  Google Scholar 

  41. Miller, R.E.; Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  42. Zhu, R.; Pan, E.; Chung, P.W.; Cai, X.; Liew, K.M.; Buldum, A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. J. Eng. Sci. 47, 1433–1444 (2006)

    Article  Google Scholar 

  43. Jaunky, N.; Knight, N.F.: An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression. Int. J. Solids Struct. 36, 3799–3820 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi, A.M., Sahmani, S. Size Dependency in the Axial Postbuckling Behavior of Nanopanels Made of Functionally Graded Material Considering Surface Elasticity. Arab J Sci Eng 42, 4617–4633 (2017). https://doi.org/10.1007/s13369-017-2600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13369-017-2600-5

Keywords