[go: up one dir, main page]

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Refining Integration-by-Parts Reduction of Feynman Integrals with Machine Learning

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 May 2025
  • Volume 2025, article number 185, (2025)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
Journal of High Energy Physics Aims and scope Submit manuscript
Refining Integration-by-Parts Reduction of Feynman Integrals with Machine Learning
Download PDF
  • Matt von Hippel  ORCID: orcid.org/0000-0002-6328-29361 &
  • Matthias Wilhelm  ORCID: orcid.org/0000-0002-0032-01811,2 
  • 308 Accesses

  • 6 Citations

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Integration-by-parts reductions of Feynman integrals pose a frequent bottleneck in state-of-the-art calculations in theoretical particle and gravitational-wave physics, and rely on heuristic approaches for selecting integration-by-parts identities, whose quality heavily influences the performance. In this paper, we investigate the use of machine-learning techniques to find improved heuristics. We use funsearch, a genetic programming variant based on code generation by a Large Language Model, in order to explore possible approaches, then use strongly typed genetic programming to zero in on useful solutions. Both approaches manage to re-discover the state-of-the-art heuristics recently incorporated into integration-by-parts solvers, and in one example find a small advance on this state of the art.

Article PDF

Download to read the full article text

Similar content being viewed by others

Some topics concerning the standard model, Feynman integrals and renormalization group methods: a review of some recent investigations and results

Article Open access 10 November 2025

Decomposition of Feynman integrals by multivariate intersection numbers

Article Open access 02 March 2021

Hypergeometric structures in Feynman integrals

Article Open access 03 April 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algorithms
  • Computational Intelligence
  • Learning algorithms
  • Machine Learning
  • Special Functions
  • Stochastic Integrals

References

  1. F.V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

  2. K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Laporta, High-precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

  4. M. Driesse, G.U. Jakobsen, G. Mogull, J. Plefka, B. Sauer and J. Usovitsch, Conservative black hole scattering at fifth post-Minkowskian and first self-force order, Phys. Rev. Lett. 132 (2024) 241402 [arXiv:2403.07781] [INSPIRE].

  5. S. Weinzierl, Feynman integrals. A comprehensive treatment for students and researchers, Springer (2022) [DOI:https://doi.org/10.1007/978-3-030-99558-4] [INSPIRE].

  6. C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].

  7. A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A.V. Smirnov and M. Zeng, FIRE 6.5: Feynman integral reduction with new simplification library, Comput. Phys. Commun. 302 (2024) 109261 [arXiv:2311.02370] [INSPIRE].

  9. A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].

  10. R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  11. P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — a Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun. 266 (2021) 108024 [arXiv:2008.06494] [INSPIRE].

  13. T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP 07 (2019) 031 [arXiv:1905.08019] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. X. Guan, X. Liu, Y.-Q. Ma and W.-H. Wu, Blade: a package for block-triangular form improved Feynman integrals decomposition, Comput. Phys. Commun. 310 (2025) 109538 [arXiv:2405.14621] [INSPIRE].

  15. J. Usovitsch, Improved integral reduction with Kira, talk at QCD meets gravity at CERN, https://indico.cern.ch/event/1317494/contributions/5697745/attachments/2770593/4827307/Kira_QCD_meets_Gravity.pdf, CERN, Geneva, Switzerland, 13 December 2023.

  16. Z. Bern et al., Amplitudes, supersymmetric black hole scattering at \( \mathcal{O} \) (G5), and loop integration, JHEP 10 (2024) 023 [arXiv:2406.01554] [INSPIRE].

  17. J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].

  18. Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals, Comput. Phys. Commun. 295 (2024) 108999 [arXiv:2305.08783] [INSPIRE].

  19. P. Mastrolia and S. Mizera, Feynman integrals and intersection theory, JHEP 02 (2019) 139 [arXiv:1810.03818] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Frellesvig, F. Gasparotto, M.K. Mandal, P. Mastrolia, L. Mattiazzi and S. Mizera, Vector space of Feynman integrals and multivariate intersection numbers, Phys. Rev. Lett. 123 (2019) 201602 [arXiv:1907.02000] [INSPIRE].

  21. A.E. Eiben and J.E. Smith, Introduction to evolutionary computing, Springer, Berlin, Heidelberg, Germany (2015) [DOI:https://doi.org/10.1007/978-3-662-44874-8].

  22. J.R. Koza, Genetic programming as a means for programming computers by natural selection, Stat. Comput. 4 (1994) 87.

    Article  Google Scholar 

  23. B. Romera-Paredes et al., Mathematical discoveries from program search with large language models, Nature 625 (2023) 468.

    Article  ADS  Google Scholar 

  24. F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau and C. Gagné, DEAP: evolutionary algorithms made easy, J. Machine Learn. Res. 13 (2012) 2171.

    MathSciNet  Google Scholar 

  25. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

  26. S. Abreu, R. Britto and C. Duhr, The SAGEX review on scattering amplitudes. Chapter 3: mathematical structures in Feynman integrals, J. Phys. A 55 (2022) 443004 [arXiv:2203.13014] [INSPIRE].

  27. R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev. D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].

  29. P. Maierhöfer and J. Usovitsch, Kira 1.2 release notes, arXiv:1812.01491 [INSPIRE].

  30. A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Klappert and F. Lange, Reconstructing rational functions with FireFly, Comput. Phys. Commun. 247 (2020) 106951 [arXiv:1904.00009] [INSPIRE].

  33. M.d.l. Maza and B. Tidor, An analysis of selection procedures with particular attention paid to proportional and Boltzmann selection, in Proceedings of the 5th international conference on genetic algorithms, San Francisco, CA, U.S.A., Morgan Kaufmann Publishers Inc., (1993), p. 124.

  34. Announcing Microsoft Copilot, your everyday AI companion webpage, https://news.microsoft.com/september-2023-event/.

  35. Codey: Google AI’s revolutionary coding assistant webpage, https://lablab.ai/tech/google/codey.

  36. B. Rozière et al., Code Llama: open foundation models for code, arXiv:2308.12950.

  37. Codestral webpage, https://mistral.ai/en/news/codestral.

  38. J. Aalto, FunSearch GitHub repository, https://github.com/jonppe/funsearch.

  39. Podman: a tool for managing oci containers and pods GitHub repository, https://github.com/containers/podman.

  40. D. Merkel, Docker: lightweight linux containers for consistent development and deployment, Linux J. 2014 (2014).

  41. S. Willison, llm: access large language models from the command-line, https://github.com/simonw/llm.

  42. Apptainer: application containers for linux, https://github.com/apptainer/apptainer.

  43. G.M. Kurtzer, V. Sochat and M.W. Bauer, Singularity: scientific containers for mobility of compute, PLoS One 12 (2017) e0177459.

  44. A. Dersy, M.D. Schwartz and X. Zhang, Simplifying polylogarithms with machine learning, Int. J. Data Sci. Math. Sci. 1 (2024) 135 [arXiv:2206.04115] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  45. T. Cai et al., Transforming the bootstrap: using transformers to compute scattering amplitudes in planar N = 4 super Yang-Mills theory, Mach. Learn. Sci. Tech. 5 (2024) 035073 [arXiv:2405.06107] [INSPIRE].

  46. C. Cheung, A. Dersy and M.D. Schwartz, Learning the simplicity of scattering amplitudes, SciPost Phys. 18 (2025) 040 [arXiv:2408.04720] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  47. Y.S. Koay, R. Enberg, S. Moretti and E. Camargo-Molina, Generating particle physics Lagrangians with transformers, arXiv:2501.09729 [INSPIRE].

  48. J. Berman, F. Charton, M. von Hippel and M. Wilhelm, in progress.

Download references

Acknowledgments

We thank Justin Berman, François Charton, Jordan Ellenberg, Garrett Merz, Maja Rudolph and Johann Usovitsch for fruitful discussions, Baptiste Rozière and Alexander Smirnov for communication, François Charton and Johann Usovitsch for comments on the manuscript as well as Cynthia Rodríguez for initial collaboration. Parts of the computations done for this project were performed on the UCloud interactive HPC system, which is managed by the eScience Center at the University of Southern Denmark. Other parts were performed on SCIENCE AI Centre’s GPU cluster at the University of Copenhagen. The work of MvH and MW was supported by the research grant 00025445 from Villum Fonden. MW was further supported by the Sapere Aude: DFF-Starting Grant 4251-00029B. MW moreover acknowledges the warm hospitality of the Data Science Institute, University of Wisconsin.

Author information

Authors and Affiliations

  1. Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen Ø, Denmark

    Matt von Hippel & Matthias Wilhelm

  2. Center for Quantum Mathematics, Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark

    Matthias Wilhelm

Authors
  1. Matt von Hippel
    View author publications

    Search author on:PubMed Google Scholar

  2. Matthias Wilhelm
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Matthias Wilhelm.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2502.05121

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Hippel, M., Wilhelm, M. Refining Integration-by-Parts Reduction of Feynman Integrals with Machine Learning. J. High Energ. Phys. 2025, 185 (2025). https://doi.org/10.1007/JHEP05(2025)185

Download citation

  • Received: 17 February 2025

  • Accepted: 14 April 2025

  • Published: 21 May 2025

  • Version of record: 21 May 2025

  • DOI: https://doi.org/10.1007/JHEP05(2025)185

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Scattering Amplitudes
  • Automation
  • Electroweak Precision Physics

Profiles

  1. Matt von Hippel View author profile

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature