

INDEX

A

adoption of genetically engineered crops, 138–139
afforestation, 122, 154
age distribution, 41, 44
age of principal farm operators, 46, 47, 53
agriculture (crop and animal production), 48
agricultural productivity, 63, 109, 110, 152
agricultural sources of biomass, 121, 123, 124
dedicated perennial crops, 123
grains and residues from annual crops, 123
Agrobacterium tumefaciens, 136
Alberta, 11, 24, 27, 29, 42, 58, 59–61, 62, 112
America’s new ghetto, 50
Andropogon Gayanus, 114
animal production, 61–63
 cattle, 61–63
 cows and calves, 61
 hogs and pigs, 61
 poultry, 62, 63
 sheep and lambs, 62
arabinose, 146
Arachis pinto, 114
Arctic sea ice, 82
Arkansas-White-Red River
 MWRR, 29
atmospheric window, 83, 84
Aughey, Samuel, 4

B

Bacillus thuringiensis (Bt), 137
Bailey (1995) ecosystem provinces, 34
big bluestem (*Andropogon gerardii*), 2, 125, 130, 131
bioconversions, 146
biodiesel, 123, 124, 143, 144, 149
biodiesel (from)
 canola (rapeseed), 144
 corn, 144
 cottonseed, 144
 mustard, 144
 palm oil, 144
 soybeans, 144
 sunflower, 144
bioenergy, 120, 121, 124, 125, 130, 158
biofuel crops
 invasive potentials of, 149
biofuels
 Feedstock Development Program, 141
 production facilities, 149
biological diversity, 139
biomass, xiii, 104, 109, 110, 113, 114, 117, 123–131, 132, 135–142
 contributions of, to US energy
 supply, 120–122
 market penetration of, 150
 supply streams, 147
biomass crops, 120–132
 under changing climate, 131
biomass-energy crops, xi
biomass feedstock, 120, 142, 154
biomass research, 170

Biomass Research and Development Act of 2000 (US Congress 2000), 120

Biomass Research and Development Technical Advisory Committee, 120

bioproducts, 120, 125, 126, 150

biorefinery, 145, 146, 158

biotechnology, 127, 135, 136, 138, 158

bison, 67

black locust (*Robinia*, spp.), 125

blizzards, 17

blue grama (*Bouteloua gracilis*), 2, 34

Brachiaria humidicola, 114

Breton, Alberta, 112

British Petroleum, 169

Bruntlund, G. H., *Our Common Future*, 63

Buffalo Commons, xii, xiii, 65–67

buffalograss (*Buchloe dactyloides*), 2

C

Canada's Ethanol Expansion Program, 145

Canadian Great Plains, xv

Canadian Prairie Provinces, 2, 29, 99, 163

capture and sequestration of biomass carbon, 155

carbon capture and sequestration (CCS), 156, 157

carbon emissions, 107–111, 153, 155

carbon sequestration, 108, 110–112, 114, 116–119, 125, 130, 151, 154

geological, 151

ocean, 151

soil, 151

carbon tax, 153, 154

carbon taxes and trading systems, 153

cell wall morphology, 142

cellulose, 142, 146, 170

cellulose content, 142, 167

cellulosic ethanol, xiii

Chad, 169

China, 169

Clear Skies" program, 150

climate (climatic) change, xi, xii, xiv, xv, 12, 16, 32, 81, 86, 99, 103, 163, 165

climate change scenarios, 86, 97

climate analogues, 87

"dirty-thirties", 87

general circulation model (GCM), xi, 87–92

uncertainties inherent in use of, 91

GCMs predict for the Plains region, 88–89

SCENGEN, 89, 94

statistical regression, 87

CO₂ atmospheric concentration of, 106, 107, 110

550 ppmv constraint, 110

CO₂-equivalent price, 154

CO₂-fertilization effect, 86

cofiring, 143

Colorado, 11, 22, 24, 27, 29, 30, 32, 35, 36, 37, 39, 40

combined-cycle gas turbines, 143

Conservation Reserve Program, 70, 112, 124, 129

conservation tillage, 114, 116, 118, 119, 141

Cook, Michael, 1

corn grain ethanol, 149

Cornbelt, 165, 171

Council for Agricultural Science and Technology (CAST), 133, 134

crops

production of, 55, 77

yields of, 124, 133

mechanical damage to, 20

cropland, 111, 113, 114, 118, 119, 123, 124, 151

cropland pasture, 121

D

demographics, 41–48

dendrochronology, 18

deprivatization, 65–67

direct-fired biomass, 143

disease resistance, 137, 138, 142

Dominion Lands Act of 1872, 5

droughts, v, xi

dry farming, 69

Dust Bowl, 5–8

Dust Bowl era, 6

dust mulching, 69

dust storms, 6, 22, 64, 68

E

emissions credits trading, 153
Encyclopedia of the Great Plains, 11, 12, 24, 25, 29
endangered species, 152
energetics, 149
energy densification, 148
Energy Efficiency and Renewable Energy (EERE) division of the USDOE, 143
energy end-use efficiency, 103
Energy Policy Act of 2005 (U.S. Congress), 158
energy prices, 167, 169, 170
environmentalism, 167–169, 170
enzymes, 146, 147
EPIC model (agricultural production), 93–94, 96
ethanol, xii, 110, 123–125, 131, 142–149, 151–155, 157, 158
ethanol from cellulosic materials, 147
ethanol from grain, 144–145
 corn, 144
 grain sorghum, 144
ethnicity, 44, 46
 African-American, 44, 45
 American Indian, 46
 Asian, 44, 45, 46
 Hispanic, 44, 46
 Latino, 46
 Native American, 44, 45, 50
 White, 45, 46, 50, 53
eucalyptus (*Eucalyptus globulus*), 125
European Union, 167
evaporation, 15, 16, 18, 23, 32, 34
evapotranspiration (ET), 15
Exon, J.J., Nebraska Governor, xv
extended growing season, 143

F

farm economy, 51–53
federal fuel tax, 153
finance and insurance, 48, 49
fishing, 48, 49
Food and Agriculture Organization of the United Nations (FAO), 135
food-product manufacturing, 48

Forest and Agricultural Sector Optimization Model (FASOM), 153

forestry, 48, 49
forests as a source of biomass, 122
fossil fuels, xi, xii, xv
frosts, 99
fuel cells, 103, 144
fungal diseases, 23
“late-blight” of potato, 23

G

gasoline price of, 152
General Electric, 168
genetic engineering (GE), 135
genetic engineering of biomass crops, 141
 Argentina, 139
 Brazil, 139
 Canada, 139, 145
 China, 139
 India, 139
 Paraguay, 139
 South Africa, 139
 USA, 139, 141, 142
genetically engineered crops, 141
 environmental benefits of, 141
 environmental risks of, 139
genetically modified organism (GMO), 136
genetic mutations, induction of, 133
genomics, 136, 147
geologic formations, reservoirs, storage, strata, 155, 156
 basalts, 155, 157
 coal basins, 155, 157
 deep saline aquifers, 155
 gas basins, 155, 157
 oil plays, 155, 157
geothermal, 120, 144
glaciers, 24
Gleick (1990) hydrologic vulnerability, 32
global mean energy balance, 83, 84
global poverty, 152
Global Technology Strategy Program (GTSP), xv, 106
global warming, xi, 9, 79, 81, 83–86
glucose, 146
Goldman Sachs, 168

government payments, 50–54
 grasses and legumes for the western
 Plains, 128–131
 alfalfa (*Medicago sativa* L.), 131
 Alti wildrye (*Elymus angustus* Trin.), 131
 big bluestem (*Andropogon gerardii*),
 125, 130
 crested wheatgrass (*Agropyron*
 desertorum (Fisch × Link)
 Schult.), 130
 indiangrass (*Sorghastrum notans* (L.)
 Nash), 130
 intermediate wheatgrass (*Elytrigia*
 intermedia Nevski spp), 130
 smooth bromegrass (*Bromus inermis*),
 130
 sweet clover (*Melilotus*), 131
 tall wheatgrass (*E. pontica* (Podp.)
 Holub spp.), 131
 Great American Desert, 3, 4
 Great Plains economy, 48–53
 Great Plains Restoration Council, 66
 Great Plains, Climatic Analogues,
 38, 40
 Central Chernozem region, 38
 Lower Volga, 38
 Northern Caucasus, 38
 Northern Japan (Hokkaido), 38
 Southern Manchuria, 38
 Vladivostok, 38
 Ukraine, 25, 38, 40
 Great Plains Drought Area Committee,
 Report of 1936, 6
 greenhouse gases, 84, 86, 88
 carbon dioxide (CO₂), 81
 chlorofluorocarbons (CFCs), 84
 methane (CH₄), 81
 nitrous oxide (N₂O), 81
 ozone (O₃), 84
 water vapor (H₂O), 54
 greenhouse gas emissions (GHGEs),
 108, 150
 greenhouse warming, 14, 24, 85, 111, 156
 gross domestic product (GDP), 48
 Great Plains, 48–50
 national, 48–50
 groundwater withdrawals, 67
 growing seasons, 17, 82, 94, 99
 Gulf of Mexico, 12, 14, 29, 35
 Gulf States, 169

H

hail, 16, 22
 hailstorms, 22, 23, 39
 hard red winter wheat, 134
 expansion of the winter wheat zone, 134
 heavy metals, 143, 148
 hemicellulose, 142, 146
 hemicellulose content, 142
 Hind, Henry, 3
 herbaceous biomass, 120, 125, 126, 140,
 142, 143
 herbicides, 128, 137, 140, 141, 149
 herbicide tolerance (HT) to, 137
 glufosinate, 137
 glyphosate, 137
 “Roundup-Ready”, 137
 High Plains aquifer, 29, 31, 32, 39
 Homestead Act of 1862, 3, 4, 5, 7
 horses, 3
 Hudson’s Bay Company, 5
 humidity, 14, 15, 16, 18, 20, 23, 38
 HUMUS model (water resources), 96
 Hurricane Katrina, 169
 Hutterites, 5
 hybrid internal combustion-electric
 battery engines, 103
 hydroelectric plants, 104
 hydroelectric power generation, 104
 hydrogen fuel cells, 103
 hydrogen gas, 144, 146
 hydrologic cycles intensification of, 83

I

Icelanders, 5
 Idaho, 147
 idle cropland, 121
 India, 169
 Indian grass (*Sorghastrum notans*), 2
 Indians, 3
 insect resistance, 137, 138
 International Service for the
 Acquisition of Agri-biotech
 Applications (ISAAA), 139
 invasive potentials of biofuel crops, 149
 IOGEN, 147

IPCC Assessment Reports, 92
IPCC SRES B2 scenario, 109
IS92a “business as usual” scenario, 107
Iran, 169
Iraq, 169
irrigated crops, 61
irrigation, 16, 24, 29, 30, 33, 38, 39,
 60–61
irrigation efficiency, 72–79
 center pivot, 77, 78
computer-controlled irrigation
 scheduling, 78
computer-guided irrigation
 scheduling, 79
drip-irrigation, 77–79
furrow irrigation, 74–77
gated-pipe, 76
sprinkler irrigation, 74, 77
surge system, 76, 77
tail-water pit, 75
irrigation infrastructure, 171

J

Jenny, Hans 1941, 24
Jews, 5
Joint Global Change Research Institute
 (JGCRI) in College Park,
 Maryland, 90, 106
JGCRI study, 89–94, 96
 Results of the JGCRI Assessment, 93

K

Kansas, 11, 19, 20, 22, 24, 27, 29, 30, 32,
 33, 36–39
Kinkaid Act of 1904, 5
Kyoto Protocol, 150

L

*Lands of the Arid Region of the
 United States 1879 Report on*, 4
land use, Great Plains, 36–38
Lethbridge, Alberta, 112
Lewis and Clark Expedition
 (1803–1806), 3
Libya, 169
lignin, 129, 142, 146
lignocellulosic biomass-based refineries,
 146

lignocellulosic portions of crop plants
 corn stover, 145
 wheat straw, 145
little bluestem (*Schizachyrium scoparius*),
 2, 36
livestock, 62, 93, 99
Long, Stephen, 3

M

Maclurapomifera, 122
major crops, 55–56
 barley (*Hordeum vulgare* L.), 57, 59
 canola (*Brassica napus* L.), 57, 59
 corn (maize, *Zea mays* L.), 57, 58
 cotton (*Gossypium hirsutum* L.),
 56, 59
 dry edible beans: (*Phaseolus vulgaris* L.),
 56, 60
 oats (*Avena sativa* L.), 56, 60
 peanuts: (*Arachis hypogaea* L.), 56, 60
 potatoes (*Solanum tuberosum* L.),
 56, 60
 sorghum (*Sorghum bicolor* (L.)
 Muench), 56, 59
 soybean (*Glycine max* (L.), Merr.),
 56, 58
 sugar beet (*Beta vulgaris* L.), 56, 60
 sunflower (*Helianthus annuus* L.), 56,
 57, 59
 wheat: (*Triticum aestivum* L.), 56, 58

Major Water Resource Regions

 (MWRRs), 29
Manitoba, 11, 24, 27, 29, 30
manure, 112, 113, 119, 120, 121, 123,
 124, 151
Mauna Loa, iv
Mead, Nebraska, xiv
Mendelian genetics, 133
Mennonites, 5
mercury, 143, 150, 152
methanol, 146, 148
methyl tertbutyl ether (MTBE), 152
metropolitan areas, 66
mineral extraction, 48
MiniCAM integrated assessment
 model, 109
minimum tillage, 70
mining, 48, 49

MINK region, 132
misanthus (Miscanthus × giganteus), 125
 Missouri River Main Stem System, 33
 Missouri River MWRR, 30, 32, 33, 36
 mitigation of potential climate change, 153, 156
 model simulations, 115
 CENTURY model, 115
 `ecosys` model, 115
 RothC model, 115
 Montana, 11, 14, 20, 22, 24, 27, 29, 30, 36–38
 Montreal Protocol, 86
 Mormons, 5

N
 National assessment, Results of, 92
 National Drought Mitigation Center, 17, 19, 21
 National Grasslands, 6
 Native Americans, 2
 Nebraska, 11, 15–24, 27, 29, 30, 32, 36, 37, 38
 net energy balance (NEB), 149, 168
 New Mexico, 11, 27, 29, 32, 34, 37, 39
Newton KANSAN, 68
 Nigeria, 169
 nitrous oxides, 143, 148, 150
 “no-regret” strategies, 165
 nonrenewable energy, 120
 North American Great Plains (NAGP), xi
 North Dakota, 11, 13, 24, 27, 29, 30, 36–38
 no-till, 70, 79, 111, 114, 117, 118, 124, 128, 141
 nuclear power, 104
 Chernobyl, 104
 Three Mile Island, 104
 Yucca Mountain, 104
 Nuttonson, Analogous Regions, 38

O
 Oak Ridge National Laboratory (ORNL), 120
 ObjECTS MiniCAM model, 157
 Ogallala aquifer, 29, 39, 65, 87

Oklahoma, 11, 17, 22, 24, 27, 29, 30, 32, 34–37, 39
 Ontario, 126, 145, 147
 Original Nations, 2

P
 Pacific Northwest National Laboratory (PNNL), xv, 106, 156, 157
 Palmer Drought Severity Index (PDSI), 19, 21
 Palliser, John, 3
 perennial bioenergy crops, 121
 personal income, 44, 50, 51, 54
 pesticides, 133, 138, 140, 141, 148
 petroleum and natural gas, 48
 petroleum prices, 153, 155, 158
 petroleum-producing nations, 153
 petro-politics, 169, 170
 phenological (development) stages, 99
 photoperiod sensitivity, 143
 photosynthesis, 86, 93, 94, 100
 Pike, Zebulon, 3
 poplar (*P. deltoides*), 122, 126, 142
 poplar (*Populus* spp.), xiii
 Popper, D.E. and Popper, F.J., 64
 population density, 44, 46, 47
 population, 41, 44
 rural, 41–44
 urban 41–44
 Powell, John Wesley, 4
 Prairie Farm Rehabilitation Administration (PFRA), 7, 123
 Prairie Provinces, 2, 5, 17, 29, 59, 60, 61, 99, 126, 134, 155
 President Franklin D. Roosevelt, 6
 processing biomass crops, 143

Q
 Quebec, 126, 127, 145
Quercus marilandica, 122

R
 “rainfall follows the plow”, 4
 recombinant DNA technology, 136
 reed canary grass (*Phalaris* spp.), 125
 reforestation, 122
refugia, 140
 renewables, 144

Resources for the Future, xv
Rivers, 15, 29, 30, 39
 Arkansas-White-Red, 19, 20, 29, 32, 33, 39
 Canadian, 29
 Missouri, 11, 19, 20, 29, 30, 32, 33, 35, 36, 39
 Cheyenne, 29, 30
 Kansas, 15, 29, 30
 Platte, 15, 29, 30
 Yellowstone, 29, 30
Souris-Red-Rainey
Rio Grande, 29, 32, 33, 39
 Alamosa, 29
 Conejos, 29
 Pecos, 29, 30
Brazos, 29, 30
Saskatchewan, 29, 30, 39
 Nelson, 29
Rocky Mountains, 11, 14, 23, 30, 35
rough fescue (*Festuca scabrella*), 2, 125

S
Saskatchewan, 11, 24, 27, 29, 30, 39
Saudi Arabia, 169
sea level rise, 83
Schjeldahl, Peter, 1
Shelterbelt Project, 21–22, 123
short rotation woody crops (SRWC), 125, 148
short-season-crop cultivars, 23
side-oats grama (*Bouteloua curtipendula*), 2
Smith, Henry Nash, 4
sod houses, 23
soil carbon sequestration, xiii, xv, xvii, 110–119
 experimental evidence of, 112
 potential for, on the NAGP, 116
 cropland, 111, 113, 114, 118, 119, 121, 123, 124, 151
 grasslands, 110, 117, 119
 rangelands, 112, 117, 149
soil carbon dynamics, 114, 115, 119
Soil Conservation Service, 6
soil organic carbon (SOC), 112, 116
soil organic matter (SOM), 24, 111
soil types, 25–27
 Alfisol, 25, 27
Aridisols, 25, 27
Brown soils, 25
Chernozem, 25, 38
Entisols, 25, 27, 35, 36, 39
Inceptisols, 25, 27
Mollisols, 25, 27, 34–36, 39
solar energy, 104, 106, 110
 active, 104
 passive, 104
solar radiation, 23
South Dakota, 11, 13, 24, 27, 29, 30, 32, 36–38
Strategic Biomass Irrigation, 171
strip cropping, 69
stubble mulching, 69, 70
Stylosanthes capitata, 114
subsidies, 131, 152
 for biofuels, 153
suitcase farmers, 67
sulfur dioxide, 143
“super-insects”, 140
“super-weeds”, 140
supplemental irrigation of biomass
 crops, 131
sustainability, 63, 64, 67, 79
sustainable agriculture, 63, 64, 79
SWAT model (hydrology), 96
sweet gum (*Liquidambar* spp.), 125
switchgrass (*Panicum virgatum*), xiii, 2, 113, 124, 125–132, 141–143, 149
 yields of, 127
 land preparation for, 128
sycamore (*Platanus* spp.), 125
syngas, 146

T
tall fescue (*Festuca* spp.), 125
Texas, 11, 12, 14, 17, 19, 20, 24, 27, 29, 30, 32, 33, 34, 36, 37, 39
Texas-Gulf MWRR, 19, 20, 29, 32, 33, 39
Timber Culture Act of 1873, 5
tornadoes, 16, 22, 23, 39
traditional plant breeding, 165
transgenic varieties, 142
transpiration, 15, 18
Tree Planter State, 122

U

U.S. Department of Agriculture's
Natural Resources Conservation
Service, 127

Ukrainians, 5

unintended transgene transfer, 140

Union of Concerned Scientists (UCS), 148

University of Nebraska, 4, 17

University of Nebraska Field
Laboratory, xiv

US Congress, 53

US Department of Energy's (USDOE)
Energy Information Administration
(EIA), 144

Fossil Energy Division, 103

US energy consumption, 120

US Environmental Protection Agency, 148

US Great Plains, xv

US National Assessment, 89, 92

US President George W. Bush, 168

V

Venezuela, 169

volatile organic compounds (VOCs), 148

W

warming trend, 82

water withdrawals, 70, 71

water-use efficiency (WUE), 86

Webb, Walter Prescott, 11

western wheatgrass (*Agropyron smithii*), 2

Wilber, Charles D., 4

Wildcard of climate change, 81–100

willow (*Salix* spp.), 125

winds, 16, 18, 20–23, 39

wind erosion control, 22, 39

minimum-tillage and no-till, 22

strip-cropping, 22

stubble-mulching, 22, 24

tillage to increase surface roughness, 22

wind power, 105

wind turbines, 104, 105

windblown silt (*loess*), 24

windbreaks, 22

windmills, 22, 23

wood waste, 120, 146

woody biomass, 126, 143

World War I, 6

World War II, 7

Wyoming, 11, 22, 24, 27, 29, 32, 36, 37, 38

X

xylose, 146

Z

zero-till, 70, 166

COLOR PLATES

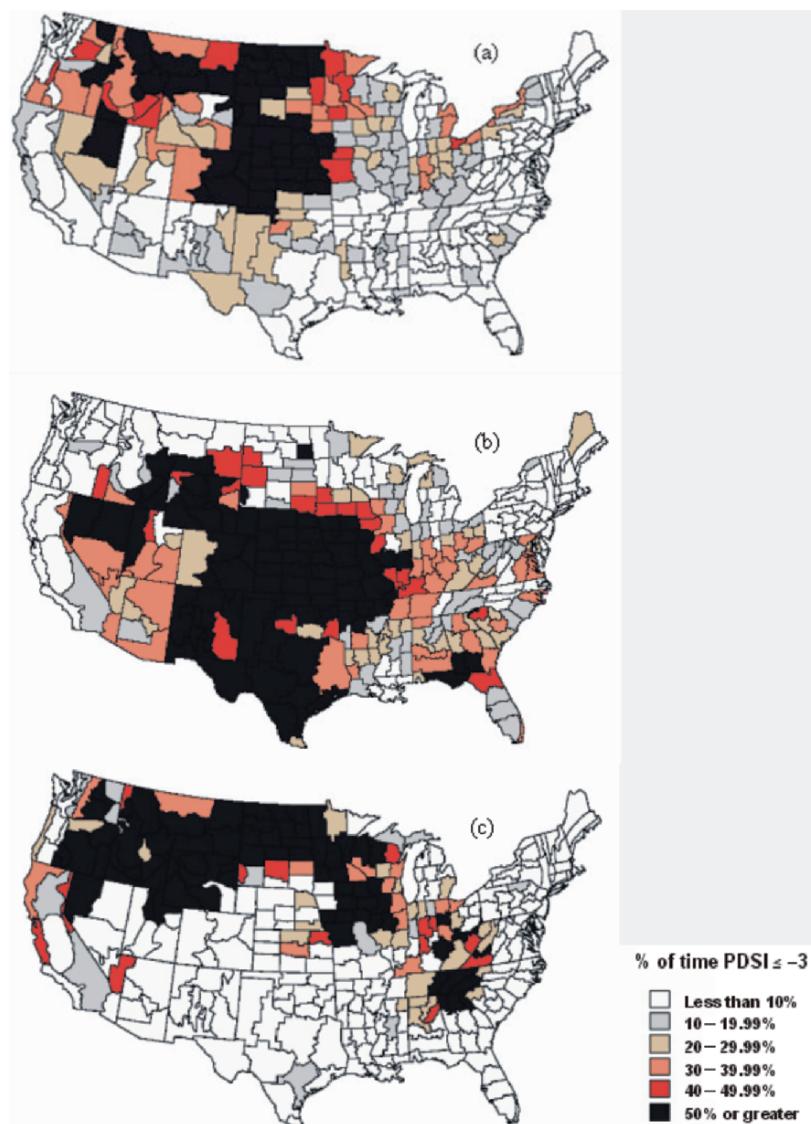


Figure 2-5. Palmer Drought Severity Indices (percent of time in severe and extreme drought) for three droughts in the USA (a) 1934–1939; (b) 1954–1956; and (c) 1988 (Maps prepared from various sources by the National Drought Mitigation Center, University of Nebraska, Lincoln.)

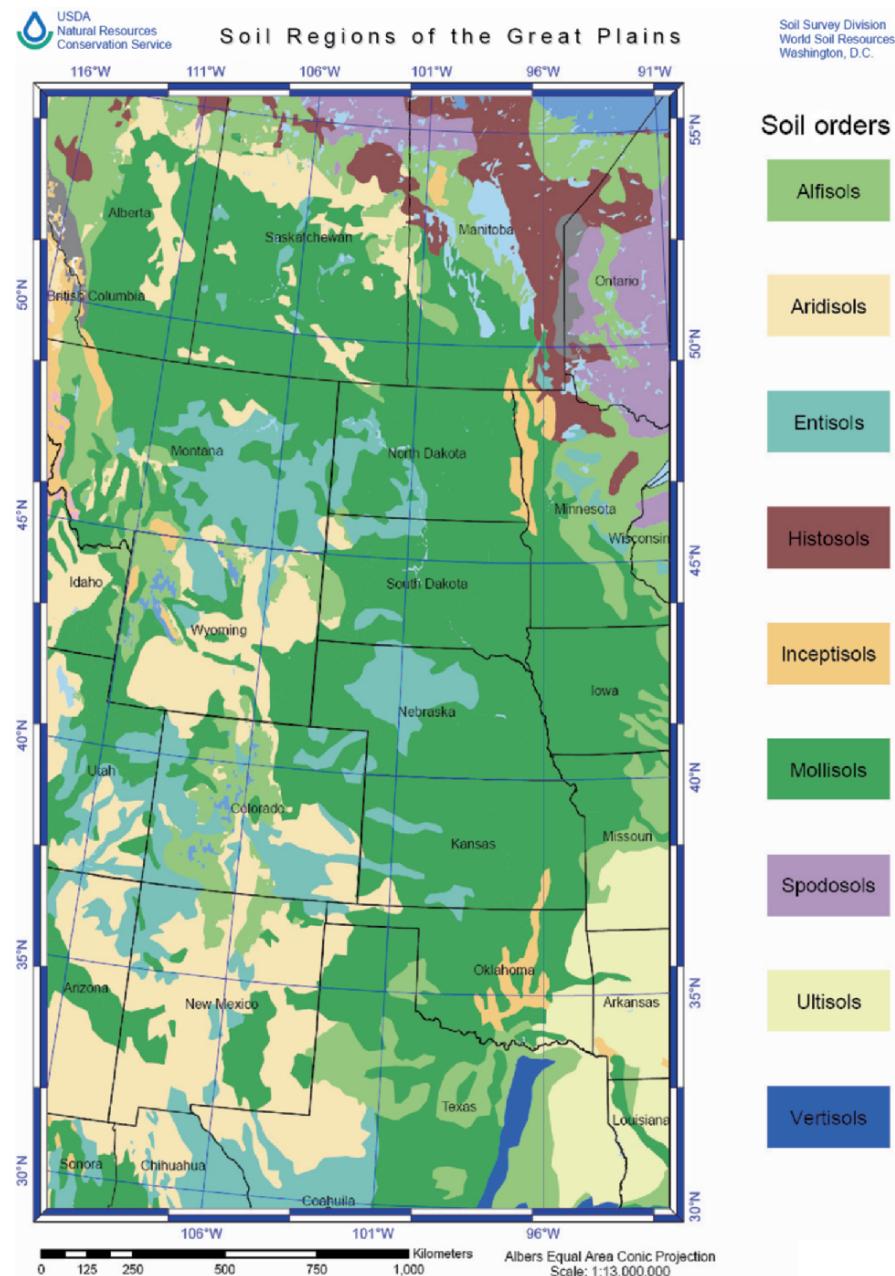


Figure 2-6. Soil regions of the North American Great Plains (Courtesy of US Department of Agriculture, Natural Resources Conservation Service, Soil Survey Division, World Soil Resources, Washington, DC.)

Figure 2-7. A typical Mollisol showing its dark colored surface horizon relatively high in content of organic matter (Adapted from US Department of Agriculture, Natural Resources Conservation Service, <http://soils.usda.gov/technical/classification/orders/mollisols.html>)

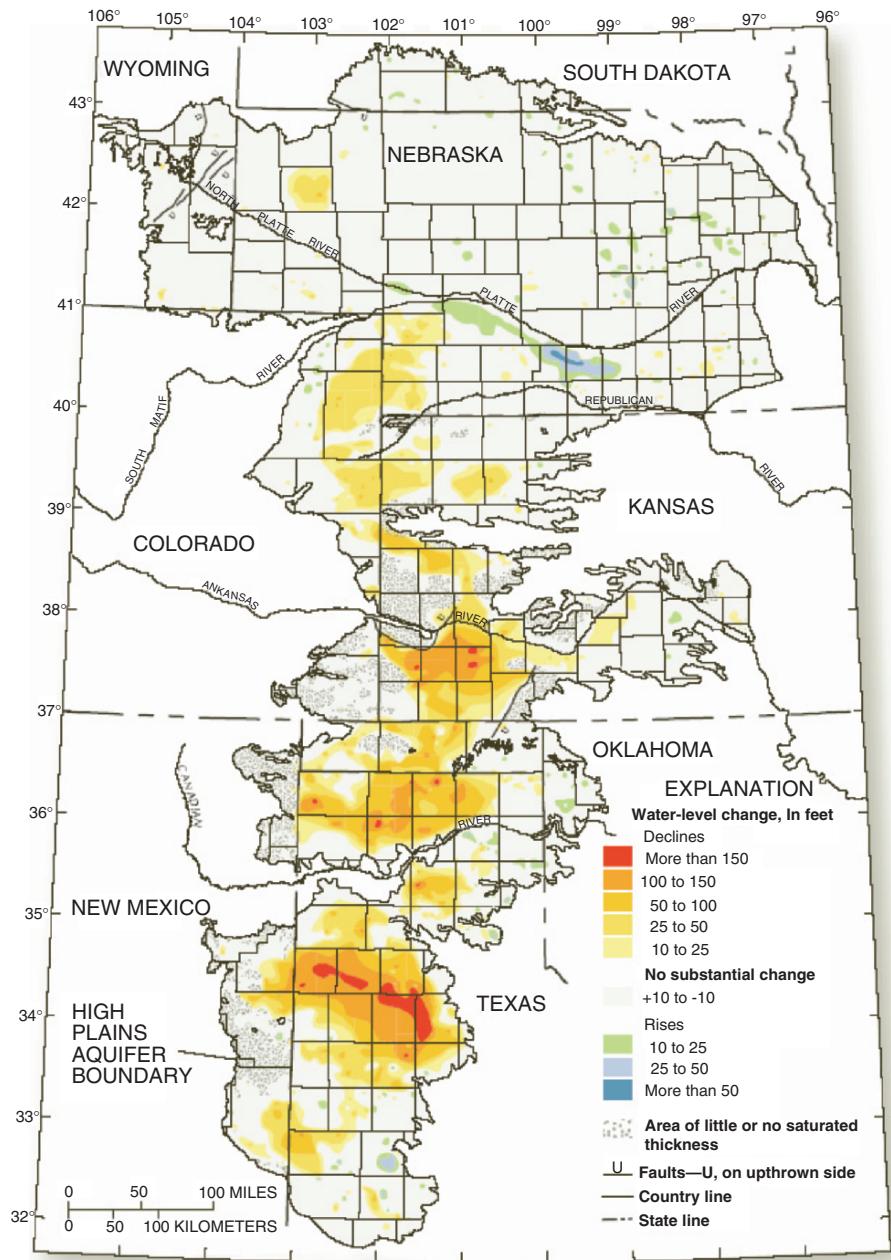


Figure 2-8. Water-level changes in the High Plains aquifer, predevelopment to 2003 (McGuire 2004, <http://pubs.usgs.gov/fs/2004/3097/pdf/fs-2004-3097.pdf>)

Figure 2-10. A view of shortgrass prairie near Ft. Collins, Colorado. (Adapted from Long Term Ecological Research Network, http://savanna.lternet.edu/gallery/sgs/SGS_010016_1)

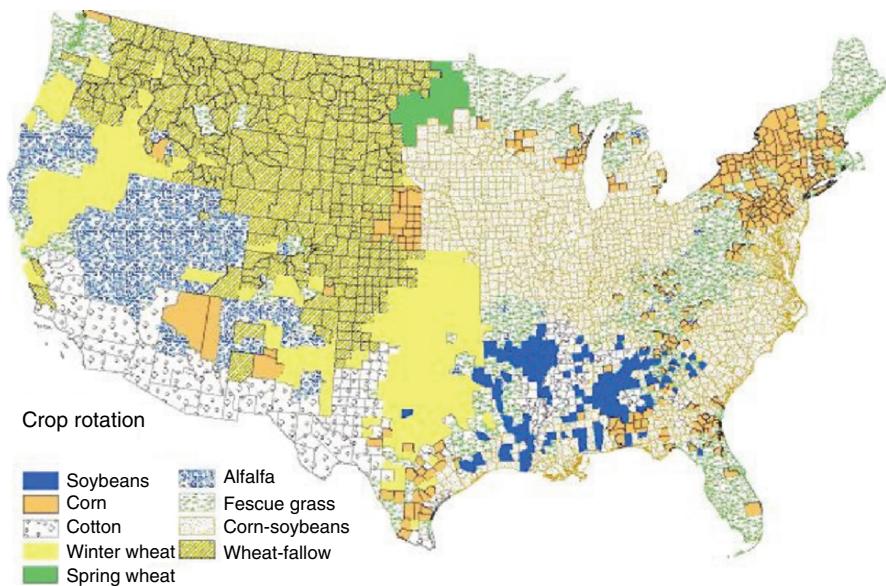
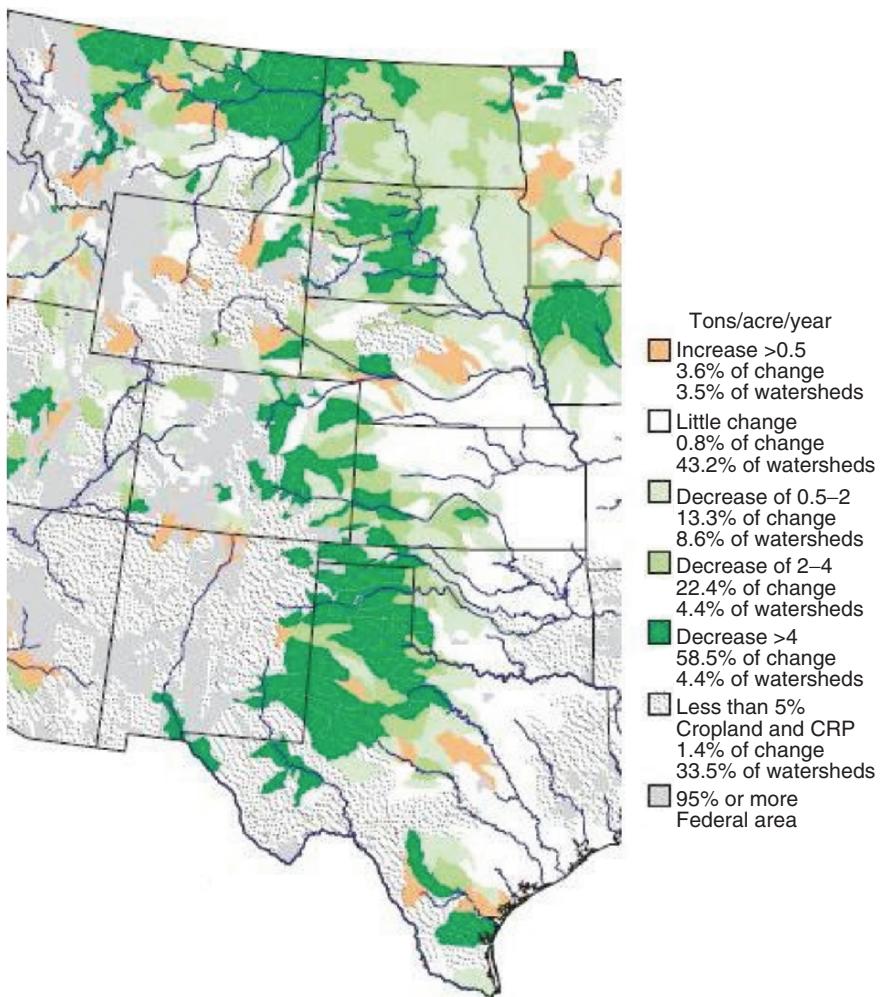



Figure 4-1. The predominant crop by county averaged from the 1985 to 1997 US Natural Resources Inventory. (Courtesy of C. Brosch and R.C. Izaurralde, Joint Global Change Research Institute, College Park, Maryland)

Figure 4-5. Change in average annual soil erosion by wind on cropland and CRP land, 1982–1997. (Source: US Department of Agriculture Natural Resources Conservation Service, <http://www.nrcs.usda.gov/technical/land/erosion.html>)

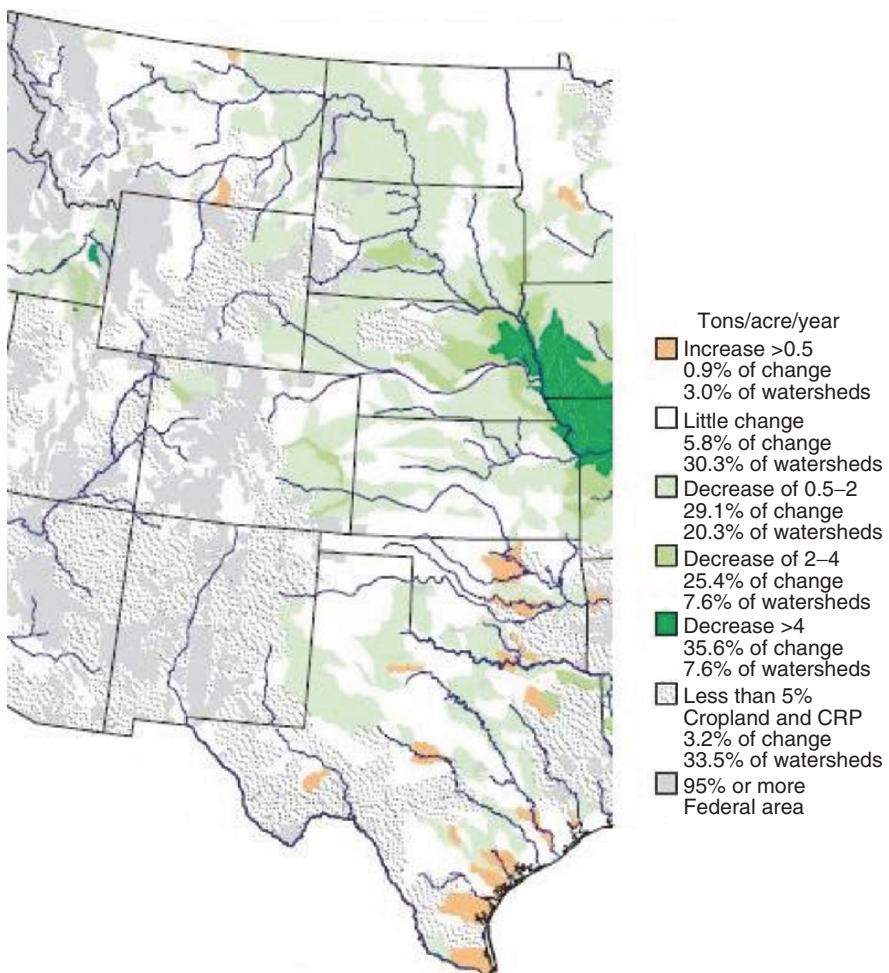


Figure 4-6. Change in average annual soil erosion by water on cropland and CRP land, 1982–1997. (Source: US Department of Agriculture Natural Resources Conservation Service, <http://www.nrcs.usda.gov/technical/land/erosion.html>)

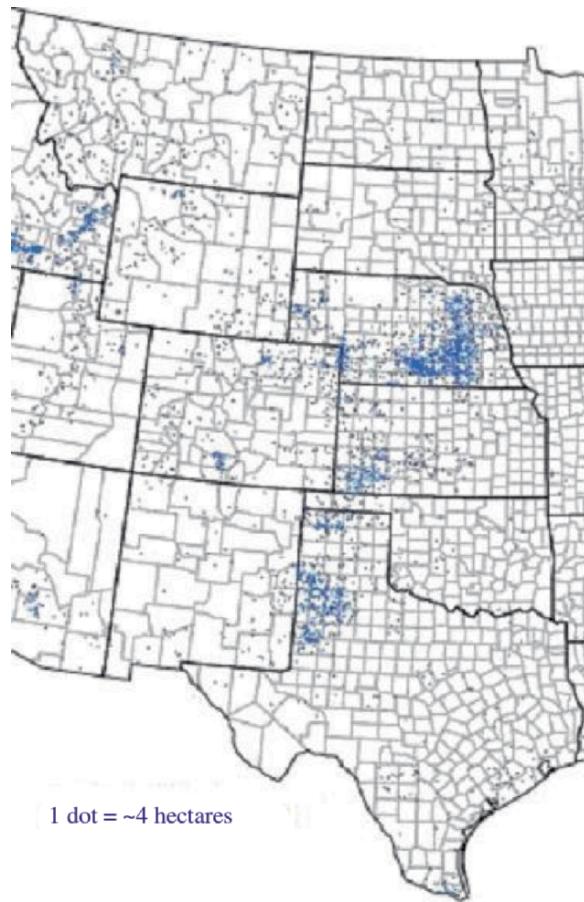


Figure 4-7. Irrigated land in the USA, 2002. (Source: 2002 US Census of Agriculture, Map 02-M079)

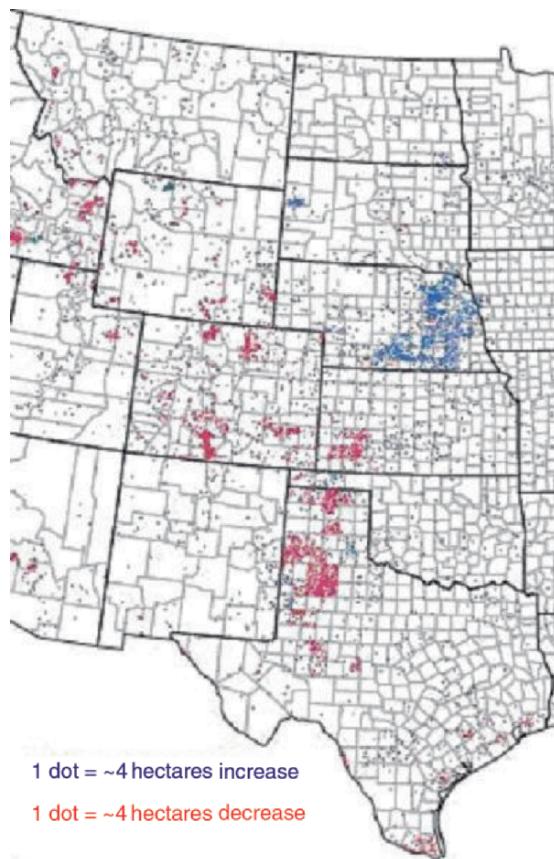


Figure 4-8. Change in area of irrigated land in the USA, 1997–2002. (Source: 2002 US Census of Agriculture, Map 02-M080)

Figure 4-9. Furrow irrigation with gated-pipe. (Source: <http://www.wtamu.edu/~crobinson/Irrigation/furgateinfo.html>)



Figure 4-10. Center pivot irrigation system. (Source: <http://www.ars.usda.gov/is/graphics/photos/oct00/k9072-1.htm>)

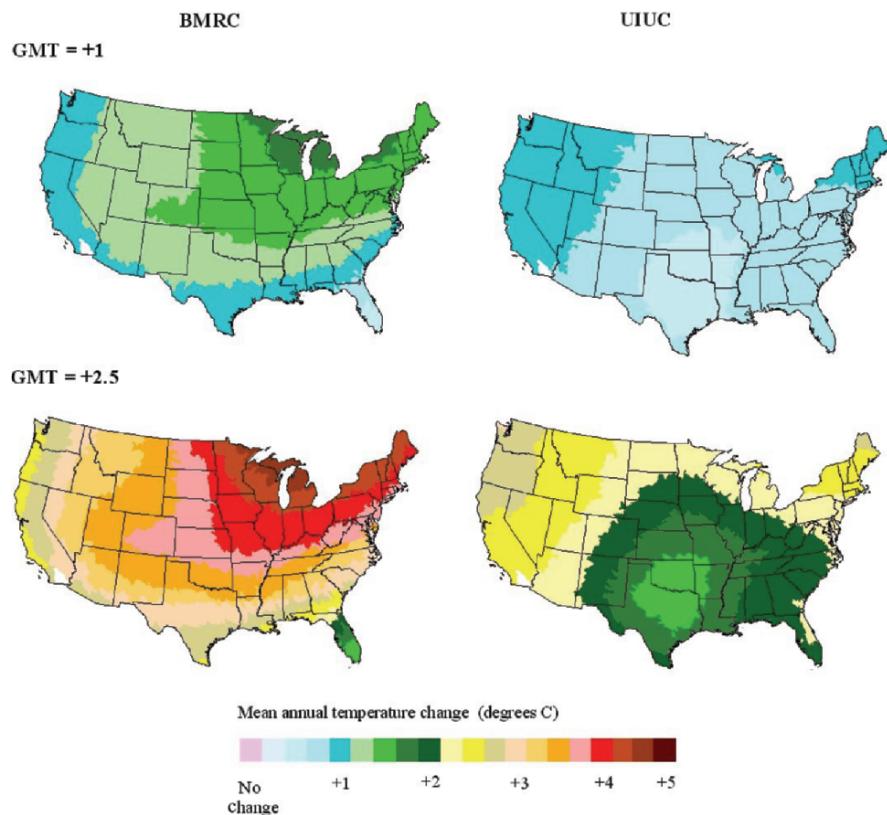


Figure 5-3a. Mean annual temperature change from baseline for the BMRC and UIUC GCMs used in the JGCRI study (Source: Smith et al. 2005)

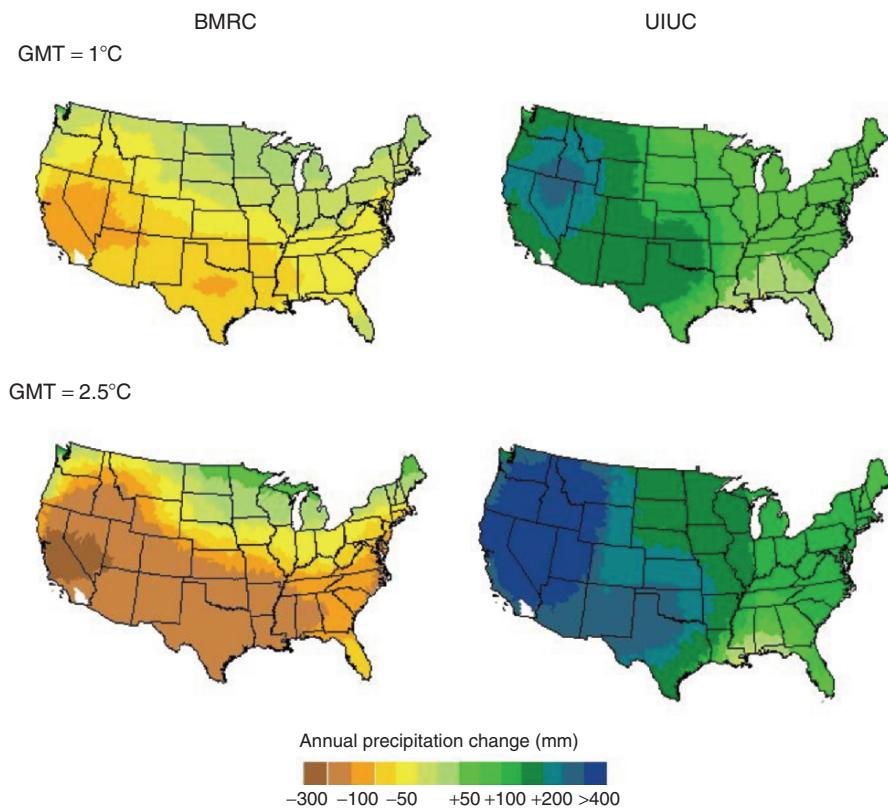


Figure 5-3b. Mean annual precipitation change from baseline for the BMRC and UIUC GCMs used in the JGCRI study (Source: Smith et al. 2005)

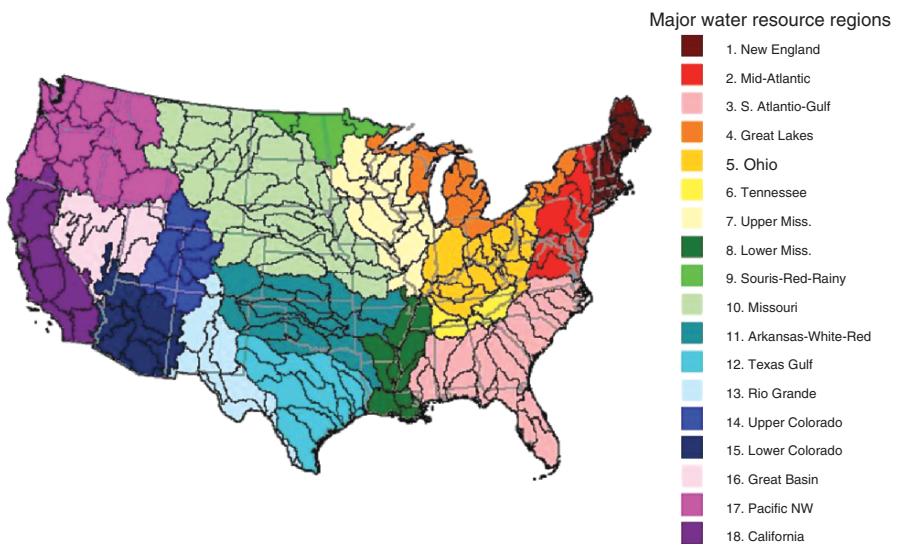


Figure 5-4. Major Water Resource Regions of the conterminous USA as defined by US Geological Survey (1987). The 204 modeling regions used in the JGCRI study are shown

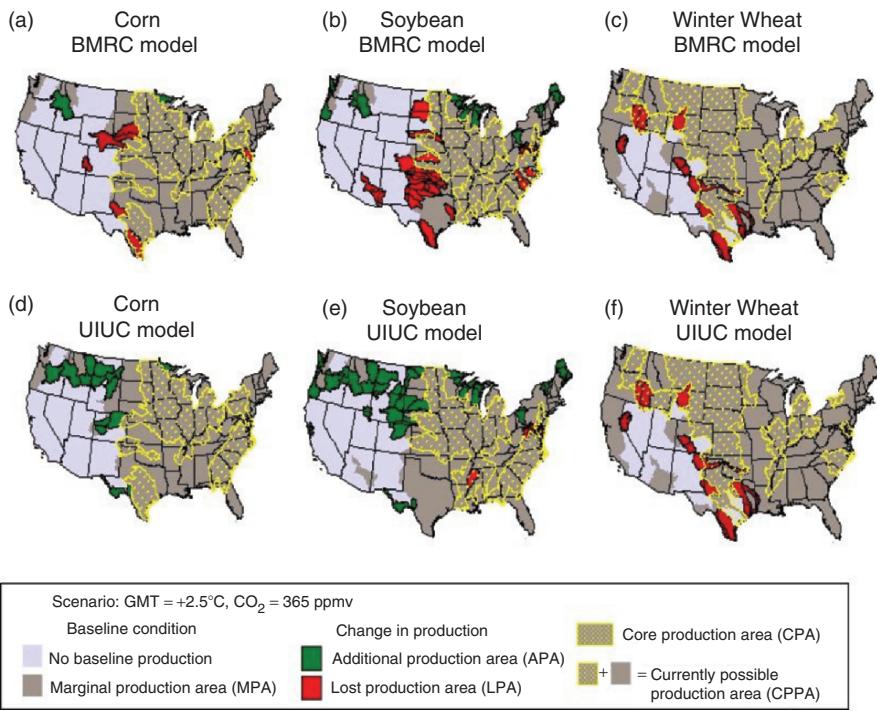


Figure 5-5. Regions projected to enter or leave production for three grain crops with the BMRC and UIUC GCMs at a global mean temperature increase of +2.5°C and CO₂ concentration of 365 ppmv (Source: Thomson et al. 2005a)

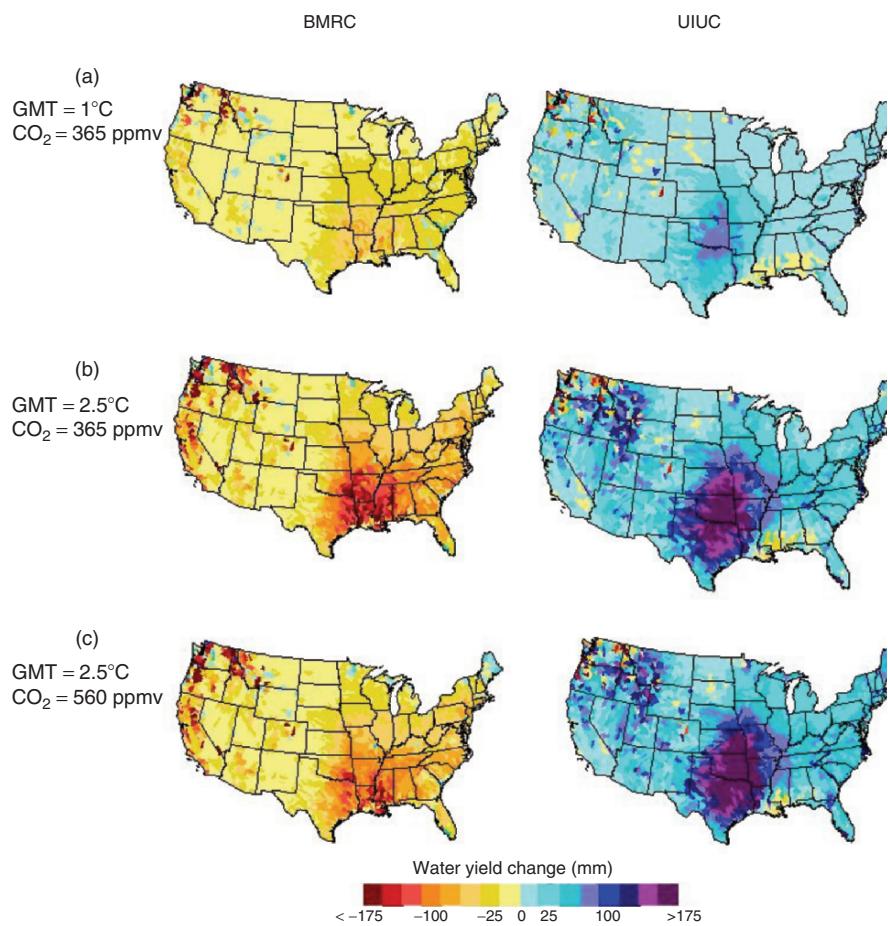


Figure 5-6. Water yield change from baseline (mm) for two GCMs with increasing global mean temperature (GMT) with and without the CO_2 -fertilization effect (Thomson et al. 2005b)

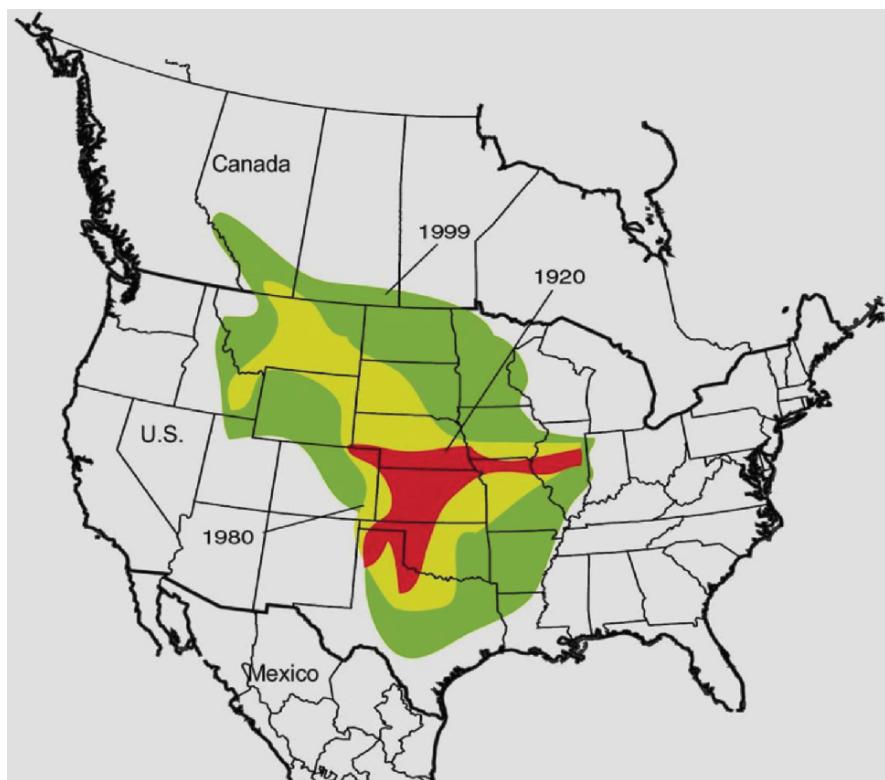


Figure 6-9. Spread of winter wheat culture from 1920 to 1999. Figure covering 1920 and 1980 from Rosenberg (1982); updated to 1999 by W.E. Easterling in 2004

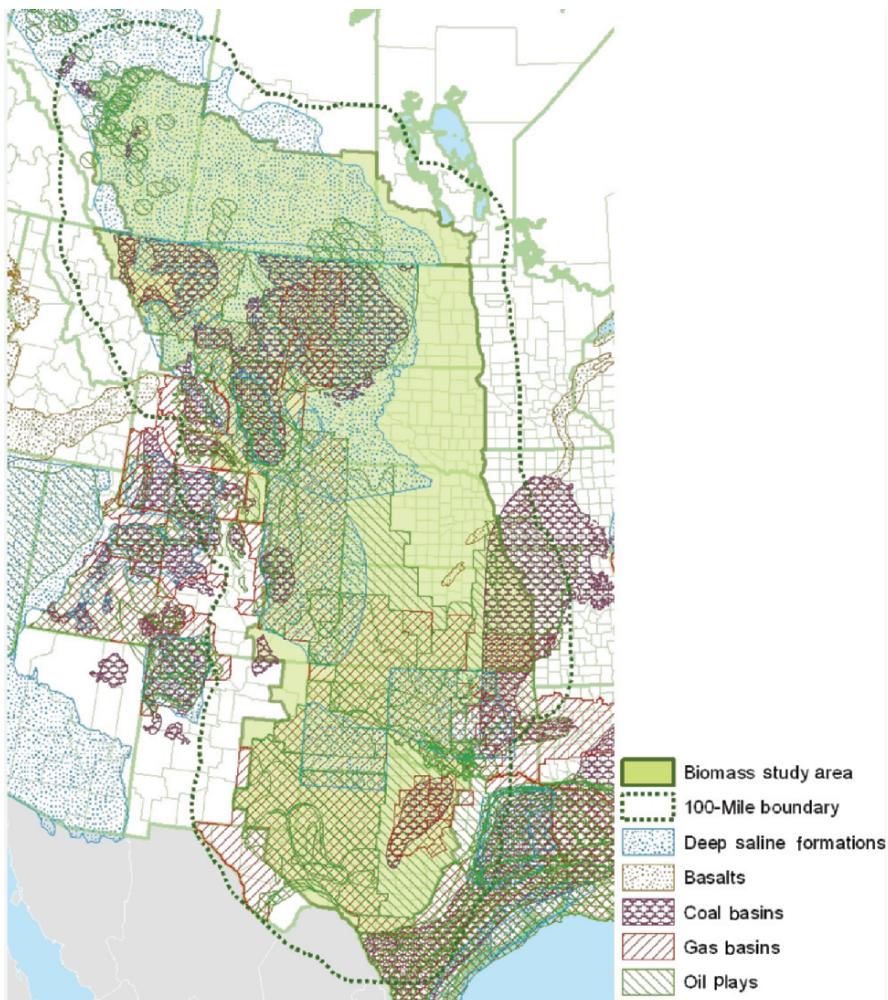


Figure 6-10. Geologic CO₂ storage potential within the North American Great Plains and the surrounding 160 km (100 miles). (Courtesy of J.J. Dooley and C.L. Davidson, Pacific Northwest National Laboratory)

Advances in Global Change Research

1. P. Martens and J. Rotmans (eds.): *Climate Change: An Integrated Perspective*. 1999 ISBN 0-7923-5996-8
2. A. Gillespie and W.C.G. Burns (eds.): *Climate Change in the South Pacific: Impacts and Responses in Australia, New Zealand, and Small Island States*. 2000 ISBN 0-7923-6077-X
3. J.L. Innes, M. Beniston and M.M. Verstraete (eds.): *Biomass Burning and Its Inter-Relationships with the Climate Systems*. 2000 ISBN 0-7923-6107-5
4. M.M. Verstraete, M. Menenti and J. Peltoniemi (eds.): *Observing Land from Space: Science, Customers and Technology*. 2000 ISBN 0-7923-6503-8
5. T. Skodvin: *Structure and Agent in the Scientific Diplomacy of Climate Change*. An Empirical Case Study of Science-Policy Interaction in the Intergovernmental Panel on Climate Change. 2000 ISBN 0-7923-6637-9
6. S. McLaren and D. Kniveton: *Linking Climate Change to Land Surface Change*. 2000 ISBN 0-7923-6638-7
7. M. Beniston and M.M. Verstraete (eds.): *Remote Sensing and Climate Modeling: Synergies and Limitations*. 2001 ISBN 0-7923-6801-0
8. E. Jochem, J. Sathaye and D. Bouille (eds.): *Society, Behaviour, and Climate Change Mitigation*. 2000 ISBN 0-7923-6802-9
9. G. Visconti, M. Beniston, E.D. Iannarelli and D. Barba (eds.): *Global Change and Protected Areas*. 2001 ISBN 0-7923-6818-1
10. M. Beniston (ed.): *Climatic Change: Implications for the Hydrological Cycle and for Water Management*. 2002 ISBN 1-4020-0444-3
11. N.H. Ravindranath and J.A. Sathaye: *Climatic Change and Developing Countries*. 2002 ISBN 1-4020-0104-5; Pb 1-4020-0771-X
12. E.O. Odada and D.O. Olaga: *The East African Great Lakes: Limnology, Palaeolimnology and Biodiversity*. 2002 ISBN 1-4020-0772-8
13. F.S. Marzano and G. Visconti: *Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques*. 2002 ISBN 1-4020-0943-7
14. F.-K. Holtmeier: *Mountain Timberlines. Ecology, Patchiness, and Dynamics*. 2003 ISBN 1-4020-1356-6
15. H.F. Diaz (ed.): *Climate Variability and Change in High Elevation Regions: Past, Present & Future*. 2003 ISBN 1-4020-1386-8
16. H.F. Diaz and B.J. Morehouse (eds.): *Climate and Water: Transboundary Challenges in the Americas*. 2003 ISBN 1-4020-1529-1
17. A.V. Parisi, J. Sabburg and M.G. Kimlin: *Scattered and Filtered Solar UV Measurements*. 2004 ISBN 1-4020-1819-3
18. C. Granier, P. Artaxo and C.E. Reeves (eds.): *Emissions of Atmospheric Trace Compounds*. 2004 ISBN 1-4020-2166-6
19. M. Beniston: *Climatic Change and its Impacts*. An Overview Focusing on Switzerland. 2004 ISBN 1-4020-2345-6
20. J.D. Unruh, M.S. Krol and N. Kliot (eds.): *Environmental Change and its Implications for Population Migration*. 2004 ISBN 1-4020-2868-7
21. H.F. Diaz and R.S. Bradley (eds.): *The Hadley Circulation: Present, Past and Future*. 2004 ISBN 1-4020-2943-8
22. A. Haurie and L. Viguier (eds.): *The Coupling of Climate and Economic Dynamics. Essays on Integrated Assessment*. 2005 ISBN 1-4020-3424-5

Advances in Global Change Research

23. U.M. Huber, H.K.M. Bugmann and M.A. Reasoner (eds.): *Global Change and Mountain Regions. An Overview of Current Knowledge*. 2005
ISBN 1-4020-3506-3; Pb 1-4020-3507-1
24. A.A. Chukhlantsev: *Microwave Radiometry of Vegetation Canopies*. 2006
ISBN 1-4020-4681-2
25. J. McBeath, J. Rosenberg: *Comparative Environmental Politics*. 2006
ISBN 1-4020-4762-2
26. M.E. Ibarrarán and R. Boyd: *Hacia el Futuro. Energy, Economics, and the Environment in 21st Century Mexico*. 2006
ISBN 1-4020-4770-3
27. N.J. Rosenberg: *A Biomass Future for the North American Great Plains: Toward Sustainable Land Use and Mitigation of Greenhouse Warming*. 2007
ISBN 1-4020-5600-1
28. V. Levizzani, P. Bauer, F.J. Turk: *Measuring Precipitation from Space. EURAIMSAT and the Future*. 2007
ISBN 1-4020-5834-9