[go: up one dir, main page]

Skip to main content
Account

Table 2 Results of using various ellipsoid surface samplers to generate \(10^8\) points on an oblate spheroid, using two different random number generators. Each column shows (from left to right): algorithm name, run-time (in seconds), speed relative to naive rejection, acceptance rate, relative standard deviation (as a percentage of the mean), the \(\chi ^2\) statistic and whether \(\chi ^2\) is smaller than the critical value, \(\chi _\textrm{crit}^2 = 65\,033.6\)

From: Patch area and uniform sampling on the surface of any ellipsoid

Oblate Spheroid: \((a,b,c) = (3,3,1.5)\)

RNG

Lagged Fibonacci (lagfib4xor)

Algorithm

\(t_\textrm{run}\) (s)

speed

r

RSD (%)

\(\chi ^2\)

\(\chi ^2 < \chi _\textrm{crit}^2\)

Naive Scale

1.493

1.0

1.0

24.878

5005750.1

No

Grad Rej

4.284

0.349

0.69007

3.316

64726.9

Yes

Grad (Trig)

5.83

0.256

0.69009

3.336

64634.3

Yes

Grad (Pol)

9.447

0.158

0.69014

3.318

64978.8

Yes

Area Rej

4.995

0.299

0.76086

3.307

64426.4

Yes

Area (Pol)

3.223

0.463

0.76099

3.303

64032.3

Yes

Area (Merc)

10.794

0.138

0.21841

3.461

73037.1

No

Ray Method

9.281

0.161

0.69011

3.309

64192.8

Yes

RNG

YARN5s (yarn5s)

Algorithm

\(t_\textrm{run}\) (s)

speed

r

RSD (%)

\(\chi ^2\)

\(\chi ^2 < \chi _\textrm{crit}^2\)

Naive Scale

3.155

1.0

1.0

24.87

5006451.3

No

Grad Rej

8.02

0.393

0.69001

3.291

64402.6

Yes

Grad (Trig)

9.331

0.338

0.69010

3.346

64716.3

Yes

Grad (Pol)

12.433

0.254

0.69012

3.283

64401.4

Yes

Area Rej

7.286

0.433

0.76088

3.295

63825.3

Yes

Area (Pol)

6.285

0.502

0.76093

3.317

63805.3

Yes

Area (Merc)

17.333

0.182

0.21846

3.39

73010.7

No

Ray Method

14.121

0.223

0.69002

3.318

64134.3

Yes