[go: up one dir, main page]

Skip to main content
Account

Table 1 Results of using various sphere surface samplers to generate \(10^8\) points, using two different random number generators. Each column shows (from left to right): algorithm name, run-time (in seconds), speed relative to cubic rejection, acceptance rate, relative standard deviation (as a percentage), the \(\chi ^2\) statistic and whether \(\chi ^2\) is smaller than the critical value, \(\chi _\textrm{crit}^2 = 65\,033.6\)

From: Patch area and uniform sampling on the surface of any ellipsoid

Sphere: \((a,b,c) = (1,1,1)\)

RNG

Lagged Fibonacci (lagfib4xor)

Algorithm

\(t_\textrm{run}\) (s)

speed

r

RSD (%)

\(\chi ^2\)

\(\chi ^2 < \chi _\textrm{crit}^2\)

Cubic Rej

2.803

1.0

0.52364

3.741

63834.1

Yes

Marsaglia

1.205

2.326

0.78545

3.783

64958.6

Yes

Trig

2.345

1.195

1.0

3.735

64346.7

Yes

Gaussian

3.477

0.806

1.0

3.736

64059.1

Yes

Cook

4.493

0.624

0.30844

3.725

64454.0

Yes

Area Rej

5.513

0.508

0.63656

3.729

64260.0

Yes

RNG

YARN5s (yarn5s)

Algorithm

\(t_\textrm{run}\) (s)

speed

r

RSD (%)

\(\chi ^2\)

\(\chi ^2 < \chi _\textrm{crit}^2\)

Cubic Rej

7.226

1.0

0.52356

3.738

63920.5

Yes

Marsaglia

2.999

2.409

0.78543

3.726

64931.0

Yes

Trig

4.018

1.798

1.0

3.737

64792.5

Yes

Gaussian

7.367

0.981

1.0

3.723

64339.9

Yes

Cook

14.008

0.516

0.3084

3.769

64724.5

Yes

Area Rej

8.027

0.9

0.63664

3.704

64468.3

Yes