[go: up one dir, main page]

Skip to main content
Log in

Direct numerical simulation of colliding droplets with intervening nonequilibrium gas film

具有非平衡流动气膜的液滴碰撞直接数值模拟

  • Research Paper
  • Published:
View saved research
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A direct numerical simulation framework was established to investigate droplet collision in a gas medium in this study. This problem is a multiscale problem owing to the intervening gas film flow that spans from a continuous flow regime to free molecular flow regime. A dual-volume of fluid numerical method was employed, incorporating rarefied gas effects, van der Waals forces, and an adaptive mesh refinement algorithm with an improved gas film thickness calculation method. The emphasis of the investigation is the size ratio effects on the gas film drainage and the transition of collision outcomes. Besides the well-known fact that coalescence is promoted by increasing the size ratio, a trend of suppressed coalescence was observed as the size ratio increased to a certain value. As the size ratio increases, gas film length increases moderately while drainage velocity rises more rapidly, reducing drainage time and promoting coalescence. With further increases in size ratio, the gas film length continues to increase, while the drainage velocity increase becomes more gradual, resulting in a longer drainage time and therefore a suppressed coalescence.

摘要

本文建立了一个直接数值模拟框架, 用于研究气相环境中的液滴碰撞问题, 该问题是一个多尺度问题, 因为碰撞液滴间的气膜 流态变化范围可从连续流态到自由分子流态. 本研究采用了双流体体积数值方法, 该方法考虑了稀薄气体效应、范德华力以及改进的 基于气膜厚度的自适应网格加密方法. 研究重点为粒径比对气膜排气和碰撞结果转捩的影响. 除了众所周知的事实, 即粒径比增大可 促进液滴融合外, 还观察到当粒径比增大到一定值时, 融合趋势受到抑制. 随着粒径比的增大, 气膜长度适度增加, 而排气速度上升速 度加快, 从而缩短了排气时间并促进了融合. 当尺寸比进一步增大时, 气膜长度继续增加, 而排气速度的增加则变得更加平缓, 导致排 气时间延长, 从而抑制了融合.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Poydenot, and B. Andreotti, Gap in drop collision rate between diffusive and inertial regimes explains the stability of fogs and non-precipitating clouds, J. Fluid Mech. 987, A37 (2024).

    Article  MathSciNet  Google Scholar 

  2. R. Gunn, Collision characteristics of freely falling water drops, Science 150, 695 (1965).

    Article  Google Scholar 

  3. F. Raes, Formation and cycling of aerosols in the global troposphere, in: Global Atmospheric Change and its Impact on Regional Air Quality (Springer, Berlin, 2002) pp. 13–18.

    Chapter  Google Scholar 

  4. C. He, Z. X. He, and P. Zhang, Droplet collision of hypergolic propellants, Droplet 3, e116 (2024).

    Article  Google Scholar 

  5. J. Hou, Z. Zhu, C. Ma, G. Wang, and E. Barakat, Experimental study on spray characteristics of aviation kerosene RP-3 in a radial rotary atomizer, Acta Mech. Sin. 40, 323382 (2024).

    Article  Google Scholar 

  6. M. Zhang, Z. Zhang, and Q. Liu, Research on the primary liquid atomization mechanism of a close-coupled vortical loop slit atomizer, Acta Mech. Sin. 39, 322476 (2023).

    Article  MathSciNet  Google Scholar 

  7. D. Li, L. Sun, Z. Li, X. Wu, G. Hu, C. Ma, Q. Sun, Y. Liu, and Y. Zhang, Suppression of secondary droplet for high-definition drop-on-demand inkjet by actively regulating the channel acoustic waves, Acta Mech. Sin. 40, 323340 (2024).

    Article  Google Scholar 

  8. O. Nelson-Dummett, G. Rivers, N. Gilani, M. Simonelli, C. J. Tuck, R. D. Wildman, R. J. M. Hague, and L. Turyanska, Off the Grid: A new strategy for material-jet 3D printing with enhanced sub-droplet resolution, Additive Manufacturing Lett. 8, 100185 (2024).

    Article  Google Scholar 

  9. G. M. Faeth, Current status of droplet and liquid combustion, Prog. Energy Combust. Sci. 3, 191 (1977).

    Article  Google Scholar 

  10. J. R. Adam, N. R. Lindblad, and C. D. Hendricks, The collision, coalescence, and disruption of water droplets, J. Appl. Phys. 39, 5173 (1968).

    Article  Google Scholar 

  11. R. H. Magarvey, and J. W. Geldart, Drop collisions under conditions of free fall, J. Atmos. Sci. 19, 107 (1962).

    Article  Google Scholar 

  12. C. E. Abbott, A survey of waterdrop interaction experiments, Rev. Geophys. 15, 363 (1977).

    Article  Google Scholar 

  13. Y. J. Jiang, A. Umemura, and C. K. Law, An experimental investigation on the collision behaviour of hydrocarbon droplets, J. Fluid Mech. 234, 171 (1992).

    Article  Google Scholar 

  14. J. Qian, and C. K. Law, Regimes of coalescence and separation in droplet collision, J. Fluid Mech. 331, 59 (1997).

    Article  Google Scholar 

  15. P. Zhang, and C. K. Law, An analysis of head-on droplet collision with large deformation in gaseous medium, Phys. Fluids 23, 042102 (2011).

    Article  Google Scholar 

  16. A. Gopinath, S. B. Chen, and D. L. Koch, Lubrication flows between spherical particles colliding in a compressible non-continuum gas, J. Fluid Mech. 344, 245 (1997).

    Article  MathSciNet  Google Scholar 

  17. R. R. Sundararajakumar, and D. L. Koch, Non-continuum lubrication flows between particles colliding in a gas, J. Fluid Mech. 313, 283 (2006).

    Article  Google Scholar 

  18. R. H. Davis, J. A. Schonberg, and J. M. Rallison, The lubrication force between two viscous drops, Phys. Fluids A-Fluid Dyn. 1, 77 (1989).

    Article  Google Scholar 

  19. J. E. Sprittles, Gas microfilms in droplet dynamics: When do drops bounce? Annu. Rev. Fluid Mech. 56, 91 (2024).

    Article  Google Scholar 

  20. M. V. Chubynsky, K. I. Belousov, D. A. Lockerby, and J. E. Sprittles, Bouncing off the walls: The influence of gas-kinetic and van der Waals effects in drop impact, Phys. Rev. Lett. 124, 084501 (2020).

    Article  Google Scholar 

  21. P. Lewin-Jones, D. A. Lockerby, and J. E. Sprittles, Collision of liquid drops: Bounce or merge? J. Fluid Mech. 995, A1 (2024).

    Article  MathSciNet  Google Scholar 

  22. P. R. Brazier-Smith, S. G. Jennings, and J. Latham, Accelerated rates of rainfall, Nature 232, 112 (1971).

    Article  Google Scholar 

  23. S. G. Bradley, and C.D. Stow, Collisions between liquid-drops, Philos. T. R. Soc. A 287, 635 (1978).

    Google Scholar 

  24. N. Ashgriz, and J. Y. Poo, Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech. 221, 183 (1990).

    Article  Google Scholar 

  25. F. Y. Testik, Outcome regimes of binary raindrop collisions, Atmos. Res. 94, 389 (2009).

    Article  Google Scholar 

  26. C. Rabe, J. Malet, and F. Feuillebois, Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number, Phys. Fluids 22, 047101 (2010).

    Article  Google Scholar 

  27. N. Ashgriz, and P. Givi, Binary collision dynamics of fuel droplets, Int. J. Heat Fluid Flow 8, 205 (1987).

    Article  Google Scholar 

  28. N. Ashgriz, and P. Givi, Coalescence efficiencies of fuel droplets in binary collisions, Int. Commun. Heat Mass Transfer 16, 11 (1989).

    Article  Google Scholar 

  29. J. P. Estrade, H. Carentz, G. Lavergne, and Y. Biscos, Experimental investigation of dynamic binary collision of ethanol droplets – A model for droplet coalescence and bouncing, Int. J. Heat Fluid Flow 20, 486 (1999).

    Article  Google Scholar 

  30. M. V. Piskunov, N. E. Shlegel, P. A. Strizhak, and R. S. Volkov, Experimental research into collisions of homogeneous and multi-component liquid droplets, Chem. Eng. Res. Des. 150, 84 (2019).

    Article  Google Scholar 

  31. P. Tkachenko, N. Shlegel, and P. Strizhak, The transition boundaries between interaction regimes of liquid droplets colliding in a gas, Chem. Eng. Res. Des. 179, 201 (2022).

    Article  Google Scholar 

  32. C. Hu, S. Xia, C. Li, and G. Wu, Three-dimensional numerical investigation and modeling of binary alumina droplet collisions, Int. J. Heat Mass Transfer 113, 569 (2017).

    Article  Google Scholar 

  33. C. Tang, P. Zhang, and C. K. Law, Bouncing, coalescence, and separation in head-on collision of unequal-size droplets, Phys. Fluids 24, 022101 (2012).

    Article  Google Scholar 

  34. F. H. Zhang, E. Q. Li, and S. T. Thoroddsen, Satellite formation during coalescence of unequal size drops, Phys. Rev. Lett. 102, 104502 (2009).

    Article  Google Scholar 

  35. S. Ray, Y. Han, Z. Yue, H. Guo, C. Y. H. Chao, and S. Cheng, New insights into head-on bouncing of unequal-size droplets on a wetting surface, J. Fluid Mech. 983, A25 (2024).

    Article  MathSciNet  Google Scholar 

  36. S. Ray, Y. Han, and S. Cheng, Pinch-off dynamics in unequal-size droplets head-on collision on a wetting surface: Experiments and direct numerical simulations, Phys. Fluids 35, 122105 (2023).

    Article  Google Scholar 

  37. S. Ray, Y. Chi, P. Zhang, and S. Cheng, Head-on collision of unequal-size droplets on a wetting surface, Phys. Fluids 35, 022114 (2023).

    Article  Google Scholar 

  38. K. L. Pan, and C. K. Law, Dynamics of droplet–film collision, J. Fluid Mech. 587, 1 (2007).

    Article  MathSciNet  Google Scholar 

  39. S. Popinet, A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations, J. Comput. Phys. 302, 336 (2015).

    Article  MathSciNet  Google Scholar 

  40. J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100, 335 (1992).

    Article  MathSciNet  Google Scholar 

  41. C. He, L. Yue, and P. Zhang, Spin-affected reflexive and stretching separation of off-center droplet collision, Phys. Rev. Fluids 7, 013603 (2022).

    Article  Google Scholar 

  42. M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M. W. Williams, A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys. 213, 141 (2006).

    Article  Google Scholar 

  43. S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys. 228, 5838 (2009).

    Article  MathSciNet  Google Scholar 

  44. T. Arrufat, M. Crialesi-Esposito, D. Fuster, Y. Ling, L. Malan, S. Pal, R. Scardovelli, G. Tryggvason, and S. Zaleski, A mass-momentum consistent, volume-of-fluid method for incompressible flow on staggered grids, Comput. Fluids 215, 104785 (2021).

    Article  MathSciNet  Google Scholar 

  45. D. Fuster, and S. Popinet, An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension, J. Comput. Phys. 374, 752 (2018).

    Article  MathSciNet  Google Scholar 

  46. L. Deike, W. K. Melville, and S. Popinet, Air entrainment and bubble statistics in breaking waves, J. Fluid Mech. 801, 91 (2016).

    Article  MathSciNet  Google Scholar 

  47. V. Sanjay, S. Lakshman, P. Chantelot, J. H. Snoeijer, and D. Lohse, Drop impact on viscous liquid films, J. Fluid Mech. 958, A25 (2023).

    Article  MathSciNet  Google Scholar 

  48. V. Sanjay, and D. Lohse, Unifying theory of scaling in drop impact: Forces and maximum spreading diameter, Phys. Rev. Lett. 134, 104003 (2025).

    Article  Google Scholar 

  49. H. Wang, S. Liu, A. C. Bayeul-Lainé, D. Murphy, J. Katz, and O. Coutier-Delgosha, Analysis of high-speed drop impact onto deep liquid pool, J. Fluid Mech. 972, A31 (2023).

    Article  MathSciNet  Google Scholar 

  50. N. Wang, Z. Zhang, P. Zhang, and C. Zhao, Towards quantitative prediction of droplet collision outcomes: A dual-VOF approach with rarefied gas effect and augmented van der Waals force, Int. J. Multiphase Flow 188, 105207 (2025).

    Article  Google Scholar 

  51. K. L. Pan, C. K. Law, and B. Zhou, Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision, J. Appl. Phys. 103, 064901 (2008).

    Article  Google Scholar 

  52. D. Liu, P. Zhang, C. K. Law, and Y. Guo, Collision dynamics and mixing of unequal-size droplets, Int. J. Heat Mass Transfer 57, 421 (2013).

    Article  Google Scholar 

  53. Z. Zhang, and P. Zhang, Kinetic energy recovery and interface hysteresis of bouncing droplets after inelastic head-on collision, Phys. Fluids 29, 103306 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51806013 and 52176134). The work at the City University of Hong Kong was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant Nos. CityU 15222421 and CityU 15218820). The authors are grateful to Dr. Chenwei Zhang for his insightful advice about modeling analysis.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ning Wang: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization and Writing – original draft. Zhenyu Zhang: Conceptualization, Funding acquisition, Resources, Supervision, Writing – review & editing. Peng Zhang: Conceptualization, Funding acquisition, Resources, Supervision, Writing – review & editing. Changlu Zhao: Funding acquisition, Resources, Supervision.

Corresponding authors

Correspondence to Zhenyu Zhang  (章振宇) or Peng Zhang  (张鹏).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhang, Z., Zhang, P. et al. Direct numerical simulation of colliding droplets with intervening nonequilibrium gas film. Acta Mech. Sin. 42, 325492 (2026). https://doi.org/10.1007/s10409-025-25492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s10409-025-25492-x

Keywords

Profiles

  1. Peng Zhang