[go: up one dir, main page]

Skip to main content

Advertisement

Advertisement
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Hecke relations in rational conformal field theory

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 07 September 2018
  • Volume 2018, article number 32, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
Journal of High Energy Physics Aims and scope Submit manuscript
Hecke relations in rational conformal field theory
Download PDF
  • Jeffrey A. Harvey  ORCID: orcid.org/0000-0001-5860-274X1 &
  • Yuxiao Wu1 
  • 848 Accesses

  • 37 Citations

  • 6 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We define Hecke operators on vector-valued modular forms of the type that appear as characters of rational conformal field theories (RCFTs). These operators extend the previously studied Galois symmetry of the modular representation and fusion algebra of RCFTs to a relation between RCFT characters. We apply our results to derive a number of relations between characters of known RCFTs with different central charges and also explore the relation between Hecke operators and RCFT characters as solutions to modular linear differential equations. We show that Hecke operators can be used to construct an infinite set of possible characters for RCFTs with two independent characters and increasing central charge. These characters have multiplicity one for the vacuum representation, positive integer coefficients in their q expansions, and are associated to a two-dimensional representation of the modular group which leads to non-negative integer fusion coefficients as determined by the Verlinde formula.

Article PDF

Download to read the full article text

Similar content being viewed by others

Towards a classification of two-character rational conformal field theories

Article Open access 29 April 2019

Hecke relations among 2d fermionic RCFTs

Article Open access 08 September 2023

Classifying three-character RCFTs with Wronskian index equalling 0 or 2

Article Open access 25 November 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Crystal Field Theory
  • Field Theory and Polynomials
  • Operator Theory
  • Special Functions
  • Integral Transforms and Operational Calculus
  • Partial Differential Equations on Manifolds

References

  1. R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. P. Bantay, The kernel of the modular representation and the Galois action in RCFT, Commun. Math. Phys. 233 (2003) 423 [math.QA/0102149] [INSPIRE].

  3. G.W. Moore and N. Seiberg, Lectures on RCFT, available at https://www.physics.rutgers.edu/~gmoore/LecturesRCFT.pdf.

  4. J. Fuchs, I. Runkel and C. Schweigert, Twenty-five years of two-dimensional rational conformal field theory, J. Math. Phys. 51 (2010) 015210 [arXiv:0910.3145] [INSPIRE].

  5. Y.-Z. Huang and J. Lepowsky, Tensor categories and the mathematics of rational and logarithmic conformal field theory, J. Phys. A 46 (2013) 494009 [arXiv:1304.7556] [INSPIRE].

  6. G. Anderson and G.W. Moore, Rationality in conformal field theory, Commun. Math. Phys. 117 (1988) 441 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].

  8. J. De Boer and J. Goeree, Markov traces and II 1 factors in conformal field theory, Commun. Math. Phys. 139 (1991) 267 [INSPIRE].

  9. M.H. Freedman, J. Gukelberger, M.B. Hastings, S. Trebst, M. Troyer and Z. Wang, Galois conjugates of topological phases, Phys. Rev. B 85 (2012) 045414 [arXiv:1106.3267] [INSPIRE].

  10. A. Coste and T. Gannon, Congruence subgroups and rational conformal field theory, math.QA/9909080 [INSPIRE].

  11. M. Bauer, Galois actions for genus one rational conformal field theories, in The mathematical beauty of physics, World Scientific, Singapore, (1997), pg. 152 [INSPIRE].

  12. A. Coste and T. Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B 323 (1994) 316 [INSPIRE].

  13. T. Eguchi and H. Ooguri, Differential equations for conformal characters in moduli space, Phys. Lett. B 203 (1988) 44 [INSPIRE].

  14. S.D. Mathur, S. Mukhi and A. Sen, On the classification of rational conformal field theories, Phys. Lett. B 213 (1988) 303 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. S.D. Mathur, S. Mukhi and A. Sen, Reconstruction of conformal field theories from modular geometry on the torus, Nucl. Phys. B 318 (1989) 483 [INSPIRE].

  16. S.G. Naculich, Differential equations for rational conformal characters, Nucl. Phys. B 323 (1989) 423 [INSPIRE].

  17. H.R. Hampapura and S. Mukhi, Two-dimensional RCFT’s without Kac-Moody symmetry, JHEP 07 (2016) 138 [arXiv:1605.03314] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. H.R. Hampapura and S. Mukhi, On 2d conformal field theories with two characters, JHEP 01 (2016) 005 [arXiv:1510.04478] [INSPIRE].

  19. M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin’s orthogonal polynomials, AMS/IP Stud. Adv. Math. 7 (1998) 97.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Milas, Virasoro algebra, Dedekind η-function and specialized MacDonald identities, Transform. Groups 9 (2004) 273.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Mason, Vector-valued modular forms and linear differential operators, Int. J. Number Theor. 3 (2007) 377.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Franc and G. Mason, On the structure of modules of vector-valued modular forms, Ramanujan J. 41 (2017) 233.

    Article  MATH  Google Scholar 

  23. C. Franc and G. Mason, 2-dimensional vector-valued modular forms, Ramanujan J. 17 (2008) 405.

  24. C. Franc and G. Mason, Fourier coefficients of vector-valued modular forms of dimension 2, Canad. Math. Bull. 57 (2014) 485.

  25. M. Kaneko, K. Nagatomo and Y. Sakai, The third order modular linear differential equations, J. Alg. 485 (2017) 332.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Arike, M. Kaneko, K. Nagatomo and Y. Sakai, Affine vertex operator algebras and modular linear differential equations, Lett. Math. Phys. 106 (2016) 693 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Y. Arike, K. Nagatomo and Y. Sakai, Vertex operator algebras, minimal models, and modular linear differential equations of order 4, submitted to J. Math. Soc. Jpn.

  28. J.-P. Serre, A course in arithmetic, Springer-Verlag, New York, U.S.A., (1973).

  29. E.B. Kiritsis, Fuchsian differential equations for characters on the torus: a classification, Nucl. Phys. B 324 (1989) 475 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Kawasetsu, The intermediate vertex subalgebras of the lattice vertex operator algebras, Lett. Math. Phys. 104 (2013) 157.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J.M. Landsberg and L. Manivel, The sextonions and \( {E}_{7\frac{1}{2}} \), Adv. Math. 201 (2006) 143.

  32. P. Deligne, La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris 322 (1996) 321.

    MathSciNet  MATH  Google Scholar 

  33. B.C. Berndt et al., The Rogers-Ramanujan continued fraction, J. Comput. Appl. Math. 105 (1999) 9.

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Hikami, On the quantum invariants for the spherical Seifert manifolds, Commun. Math. Phys. 268 (2006) 285.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. D. Zagier, Elliptic modular forms and their applications, chapter 1 in The 1-2-3 of modular forms, lectures at a Summer School in Nordfjordeid, Norway, Springer, Berlin, Germany, (2008).

  36. R.A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge, U.K., New York, U.S.A. and Melbourne, Australia, (1977).

  37. G. Höhn, Selbstdual Vertesoperatorsuperalgebren und das Babymonster (in German), Ph.D. thesis, Bonn University, Bonn, Germany, (1995) [arXiv:0706.0236].

  38. J. Sturm, On the congruence of modular forms, in Number Theory, Lect. Notes Math. 1240, Springer-Verlag, Berlin, Germany, (1987), pg. 275.

  39. F. Diamond and J. Shurman, A first course in modular forms, Grad. Texts Math. 228, Springer, New York, U.S.A., (2005).

  40. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, U.S.A., (1994).

  41. J.H. Bruinier and O. Stein, The Weil representation and Hecke operators for vector valued modular forms, Math. Z. 264 (2008) 249 [arXiv:0704.1868].

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Westerholt-Raum, Products of vector valued Eisenstein series, arXiv:1411.3877.

  43. W. Eholzer and N.-P. Skoruppa, Modular invariance and uniqueness of conformal characters, Commun. Math. Phys. 174 (1995) 117 [hep-th/9407074] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. W. Eholzer, Fusion algebras induced by representations of the modular group, Int. J. Mod. Phys. A 8 (1993) 3495 [hep-th/9210040] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. W. Eholzer, On the classification of modular fusion algebras, Commun. Math. Phys. 172 (1995) 623 [hep-th/9408160] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. V. Bouchard, T. Creutzig, D.-E. Diaconescu, C. Doran, C. Quigley and A. Sheshmani, Vertical D4-D2-D0 bound states on K3 fibrations and modularity, Commun. Math. Phys. 350 (2017) 1069 [arXiv:1601.04030] [INSPIRE].

  47. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

  48. C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches and modular differential equations, JHEP 08 (2018) 114 [arXiv:1707.07679] [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Enrico Fermi Institute and Department of Physics, University of Chicago, 933 E 56th St., Chicago, IL, 60637, U.S.A.

    Jeffrey A. Harvey & Yuxiao Wu

Authors
  1. Jeffrey A. Harvey
    View author publications

    Search author on:PubMed Google Scholar

  2. Yuxiao Wu
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Jeffrey A. Harvey.

Additional information

ArXiv ePrint: 1804.06860

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, J.A., Wu, Y. Hecke relations in rational conformal field theory. J. High Energ. Phys. 2018, 32 (2018). https://doi.org/10.1007/JHEP09(2018)032

Download citation

  • Received: 10 May 2018

  • Accepted: 03 September 2018

  • Published: 07 September 2018

  • Version of record: 07 September 2018

  • DOI: https://doi.org/10.1007/JHEP09(2018)032

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Models in String Theory
  • Conformal Field Theory

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature