[go: up one dir, main page]

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

QCD calculations of B → π, K form factors with higher-twist corrections

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 03 January 2019
  • Volume 2019, article number 24, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
QCD calculations of B → π, K form factors with higher-twist corrections
Download PDF
  • Cai-Dian Lü1,2,
  • Yue-Long Shen3,
  • Yu-Ming Wang4 &
  • …
  • Yan-Bing Wei  ORCID: orcid.org/0000-0001-5917-57861,2,4 
  • 695 Accesses

  • 68 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We update QCD calculations of B → π, K form factors at large hadronic recoil by including the subleading-power corrections from the higher-twist B-meson light-cone distribution amplitudes (LCDAs) up to the twist-six accuracy and the strange-quark mass effects at leading-power in Λ/mb from the twist-two B-meson LCDA ϕ + B (ω, μ). The higher-twist corrections from both the two-particle and three-particle B-meson LCDAs are computed from the light-cone QCD sum rules (LCSR) at tree level. In particular, we construct the local duality model for the twist-five and -six B-meson LCDAs, in agreement with the corresponding asymptotic behaviours at small quark and gluon momenta, employing the method of QCD sum rules in heavy quark effective theory at leading order in αs. The strange quark mass effects in semileptonic B → K form factors yield the leading-power contribution in the heavy quark expansion, consistent with the power-counting analysis in soft-collinear effective theory, and they are also computed from the LCSR approach due to the appearance of the rapidity singularities. We demonstrate explicitly that the SU(3)-flavour symmetry breaking effects between B → π and B → K form factors, free of the power suppression in Λ/mb, are suppressed by a factor of \( {\alpha}_s\left(\sqrt{m_b\Lambda}\right) \) in perturbative expansion, and they also respect the large-recoil symmetry relations of the heavy-to-light form factors at least at one-loop accuracy. An exploratory analysis of the obtained sum rules for B → π, K form factors with two distinct models for the B-meson LCDAs indicates that the dominant higher-twist corrections are from the Wandzura-Wilczek part of the two-particle LCDA of twist five g − B (ω, μ) instead of the three-particle B-meson LCDAs. The resulting SU(3)-flavour symmetry violation effects of B → π, K form factors turn out to be insensitive to the non-perturbative models of B-meson LCDAs. We further explore the phenomenological aspects of the semileptonic B → πℓν decays and the rare exclusive processes B → Kνν, including the determination of the CKM matrix element |Vub|, the normalized differential q2 distributions and precision observables defined by the ratios of branching fractions for the above-mentioned two channels in the same intervals of q2.

Article PDF

Download to read the full article text

Similar content being viewed by others

Perturbative corrections to B → D form factors in QCD

Article Open access 13 June 2017

Precision calculations of Bd,s → π, K decay form factors in soft-collinear effective theory

Article Open access 20 March 2023

Higher-twist effects in light-cone sum rule for the \(B\rightarrow \pi \) form factor

Article Open access 04 July 2017
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Fermilab Lattice and MILC collaborations, |V ub| from B → πℓν decays and (2 + 1)-flavor lattice QCD, Phys. Rev. D 92 (2015) 014024 [arXiv:1503.07839] [INSPIRE].

  2. Fermilab Lattice and MILC collaboration, B → πℓℓ form factors for new-physics searches from lattice QCD, Phys. Rev. Lett. 115 (2015) 152002 [arXiv:1507.01618] [INSPIRE].

  3. J.A. Bailey et al., B → Kℓ + ℓ − decay form factors from three-flavor lattice QCD, Phys. Rev. D 93 (2016) 025026 [arXiv:1509.06235] [INSPIRE].

    ADS  Google Scholar 

  4. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

  5. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

  6. M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

  7. M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with non-Abelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].

  8. M. Beneke, Y. Kiyo and D.s. Yang, Loop corrections to subleading heavy quark currents in SCET, Nucl. Phys. B 692 (2004) 232 [hep-ph/0402241] [INSPIRE].

  9. T. Becher and R.J. Hill, Loop corrections to heavy-to-light form-factors and evanescent operators in SCET, JHEP 10 (2004) 055 [hep-ph/0408344] [INSPIRE].

  10. R. Bonciani and A. Ferroglia, Two-loop QCD corrections to the heavy-to-light quark decay, JHEP 11 (2008) 065 [arXiv:0809.4687] [INSPIRE].

    Article  ADS  Google Scholar 

  11. H.M. Asatrian, C. Greub and B.D. Pecjak, NNLO corrections to \( \overline{B}\to {X}_u\ell \overline{\nu} \) in the shape-function region, Phys. Rev. D 78 (2008) 114028 [arXiv:0810.0987] [INSPIRE].

    ADS  Google Scholar 

  12. M. Beneke, T. Huber and X.-Q. Li, Two-loop QCD correction to differential semi-leptonic b → u decays in the shape-function region, Nucl. Phys. B 811 (2009) 77 [arXiv:0810.1230] [INSPIRE].

  13. G. Bell, NNLO corrections to inclusive semileptonic B decays in the shape-function region, Nucl. Phys. B 812 (2009) 264 [arXiv:0810.5695] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. G. Bell, M. Beneke, T. Huber and X.-Q. Li, Heavy-to-light currents at NNLO in SCET and semi-inclusive \( \overline{B}\to {X}_s{\ell}^{+}{\ell}^{-} \) decay, Nucl. Phys. B 843 (2011) 143 [arXiv:1007.3758] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. R.J. Hill, T. Becher, S.J. Lee and M. Neubert, Sudakov resummation for subleading SCET currents and heavy-to-light form-factors, JHEP 07 (2004) 081 [hep-ph/0404217] [INSPIRE].

  16. M. Beneke and D. Yang, Heavy-to-light B meson form-factors at large recoil energy: spectator-scattering corrections, Nucl. Phys. B 736 (2006) 34 [hep-ph/0508250] [INSPIRE].

  17. M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].

  18. P. Ball and R. Zwicky, Improved analysis of B → πeν from QCD sum rules on the light cone, JHEP 10 (2001) 019 [hep-ph/0110115] [INSPIRE].

  19. P. Ball and R. Zwicky, New results on B → π, K, η decay formfactors from light-cone sum rules, Phys. Rev. D 71 (2005) 014015 [hep-ph/0406232] [INSPIRE].

  20. G. Duplancic, A. Khodjamirian, T. Mannel, B. Melic and N. Offen, Light-cone sum rules for B → π form factors revisited, JHEP 04 (2008) 014 [arXiv:0801.1796] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Khodjamirian, T. Mannel and N. Offen, B-meson distribution amplitude from the B → π form-factor, Phys. Lett. B 620 (2005) 52 [hep-ph/0504091] [INSPIRE].

  22. A. Khodjamirian, T. Mannel and N. Offen, Form-factors from light-cone sum rules with B-meson distribution amplitudes, Phys. Rev. D 75 (2007) 054013 [hep-ph/0611193] [INSPIRE].

  23. F. De Fazio, T. Feldmann and T. Hurth, Light-cone sum rules in soft-collinear effective theory, Nucl. Phys. B 733 (2006) 1 [Erratum ibid. B 800 (2008) 405] [hep-ph/0504088] [INSPIRE].

  24. F. De Fazio, T. Feldmann and T. Hurth, SCET sum rules for B → P and B → V transition form factors, JHEP 02 (2008) 031 [arXiv:0711.3999] [INSPIRE].

    Article  Google Scholar 

  25. Y.-M. Wang and Y.-L. Shen, QCD corrections to B → π form factors from light-cone sum rules, Nucl. Phys. B 898 (2015) 563 [arXiv:1506.00667] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Y.-M. Wang, Y.-B. Wei, Y.-L. Shen and C.-D. Lü, Perturbative corrections to B → D form factors in QCD, JHEP 06 (2017) 062 [arXiv:1701.06810] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Y.-L. Shen, Y.-B. Wei and C.-D. Lü, Renormalization group analysis of B → π form factors with B-meson light-cone sum rules, Phys. Rev. D 97 (2018) 054004 [arXiv:1607.08727] [INSPIRE].

    ADS  Google Scholar 

  28. Y.-M. Wang, Y.-L. Shen and C.-D. Lü, Λb → p, Λ transition form factors from QCD light-cone sum rules, Phys. Rev. D 80 (2009) 074012 [arXiv:0907.4008] [INSPIRE].

    ADS  Google Scholar 

  29. T. Feldmann and M.W.Y. Yip, Form factors for Lambda b → Λ transitions in SCET, Phys. Rev. D 85 (2012) 014035 [Erratum ibid. D 86 (2012) 079901] [arXiv:1111.1844] [INSPIRE].

  30. Y.-M. Wang and Y.-L. Shen, Perturbative corrections to Λb → Λ form factors from QCD light-cone sum rules, JHEP 02 (2016) 179 [arXiv:1511.09036] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Botts and G.F. Sterman, Hard elastic scattering in QCD: leading behavior, Nucl. Phys. B 325 (1989) 62 [INSPIRE].

  32. H.-N. Li and G.F. Sterman, The perturbative pion form-factor with Sudakov suppression, Nucl. Phys. B 381 (1992) 129 [INSPIRE].

    Article  ADS  Google Scholar 

  33. H.-N. Li, Y.-L. Shen, Y.-M. Wang and H. Zou, Next-to-leading-order correction to pion form factor in k T factorization, Phys. Rev. D 83 (2011) 054029 [arXiv:1012.4098] [INSPIRE].

    ADS  Google Scholar 

  34. H.-N. Li, Y.-L. Shen and Y.-M. Wang, Next-to-leading-order corrections to B → π form factors in k T factorization, Phys. Rev. D 85 (2012) 074004 [arXiv:1201.5066] [INSPIRE].

    ADS  Google Scholar 

  35. H.-N. Li, Y.-L. Shen and Y.-M. Wang, Resummation of rapidity logarithms in B meson wave functions, JHEP 02 (2013) 008 [arXiv:1210.2978] [INSPIRE].

    Article  ADS  Google Scholar 

  36. H.-N. Li, Y.-L. Shen and Y.-M. Wang, Joint resummation for pion wave function and pion transition form factor, JHEP 01 (2014) 004 [arXiv:1310.3672] [INSPIRE].

    Article  ADS  Google Scholar 

  37. X.-G. He, T. Li, X.-Q. Li and Y.-M. Wang, PQCD calculation for Λb → Λγ in the Standard Model, Phys. Rev. D 74 (2006) 034026 [hep-ph/0606025] [INSPIRE].

  38. C.-D. Lü, Y.-M. Wang, H. Zou, A. Ali and G. Kramer, Anatomy of the pQCD approach to the baryonic decays Λb → pπ, pK, Phys. Rev. D 80 (2009) 034011 [arXiv:0906.1479] [INSPIRE].

    ADS  Google Scholar 

  39. W. Wang, B to tensor meson form factors in the perturbative QCD approach, Phys. Rev. D 83 (2011) 014008 [arXiv:1008.5326] [INSPIRE].

  40. Y. Li, C.-D. Lü, Z.-J. Xiao and X.-Q. Yu, Branching ratio and CP asymmetry of B s → π + π − decays in the perturbative QCD approach, Phys. Rev. D 70 (2004) 034009 [hep-ph/0404028] [INSPIRE].

  41. Q. Qin, Z.-T. Zou, X. Yu, H.-N. Li and C.-D. Lü, Perturbative QCD study of B s decays to a pseudoscalar meson and a tensor meson, Phys. Lett. B 732 (2014) 36 [arXiv:1401.1028] [INSPIRE].

    Article  ADS  Google Scholar 

  42. H.-N. Li and Y.-M. Wang, Non-dipolar Wilson links for transverse-momentum-dependent wave functions, JHEP 06 (2015) 013 [arXiv:1410.7274] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Y.-M. Wang, Non-dipolar gauge links for transverse-momentum-dependent pion wave functions, EPJ Web Conf. 112 (2016) 01021 [arXiv:1512.08374] [INSPIRE].

    Article  Google Scholar 

  44. Belle II collaboration, The Belle II physics book, arXiv:1808.10567 [INSPIRE].

  45. V.M. Braun, Y. Ji and A.N. Manashov, Higher-twist B-meson distribution amplitudes in HQET, JHEP 05 (2017) 022 [arXiv:1703.02446] [INSPIRE].

    Article  ADS  Google Scholar 

  46. H. Kawamura, J. Kodaira, C.-F. Qiao and K. Tanaka, B-meson light cone distribution amplitudes in the heavy quark limit, Phys. Lett. B 523 (2001) 111 [Erratum ibid. B 536 (2002)344] [hep-ph/0109181] [INSPIRE].

  47. A.K. Leibovich, Z. Ligeti and M.B. Wise, Comment on quark masses in SCET, Phys. Lett. B 564 (2003) 231 [hep-ph/0303099] [INSPIRE].

  48. M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

  49. M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to light B meson form-factors at large recoil, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255] [INSPIRE].

  50. A.G. Grozin and M. Neubert, Asymptotics of heavy meson form-factors, Phys. Rev. D 55 (1997) 272 [hep-ph/9607366] [INSPIRE].

  51. M. Beneke and J. Rohrwild, B meson distribution amplitude from B → γℓν, Eur. Phys. J. C 71 (2011) 1818 [arXiv:1110.3228] [INSPIRE].

  52. Y.-M. Wang, Factorization and dispersion relations for radiative leptonic B decay, JHEP 09 (2016) 159 [arXiv:1606.03080] [INSPIRE].

  53. I.I. Balitsky and V.M. Braun, Evolution equations for QCD string operators, Nucl. Phys. B 311 (1989) 541 [INSPIRE].

  54. M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [INSPIRE].

  55. Y.-M. Wang and Y.-L. Shen, Subleading-power corrections to the radiative leptonic B → γℓν decay in QCD, JHEP 05 (2018) 184 [arXiv:1803.06667] [INSPIRE].

    Article  ADS  Google Scholar 

  56. V.M. Braun, D. Yu. Ivanov and G.P. Korchemsky, The B meson distribution amplitude in QCD, Phys. Rev. D 69 (2004) 034014 [hep-ph/0309330] [INSPIRE].

  57. V.M. Braun and I.E. Filyanov, Conformal invariance and pion wave functions of nonleading twist, Z. Phys. C 48 (1990) 239 [Sov. J. Nucl. Phys. 52 (1990) 126] [Yad. Fiz. 52 (1990) 199] [INSPIRE].

  58. T. Feldmann, B.O. Lange and Y.-M. Wang, B-meson light-cone distribution amplitude: perturbative constraints and asymptotic behavior in dual space, Phys. Rev. D 89 (2014) 114001 [arXiv:1404.1343] [INSPIRE].

    ADS  Google Scholar 

  59. T. Nishikawa and K. Tanaka, QCD sum rules for quark-gluon three-body components in the B meson, Nucl. Phys. B 879 (2014) 110 [arXiv:1109.6786] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. B.O. Lange and M. Neubert, Renormalization group evolution of the B meson light cone distribution amplitude, Phys. Rev. Lett. 91 (2003) 102001 [hep-ph/0303082] [INSPIRE].

  61. Y.-M. Wang and Y.-L. Shen, Subleading power corrections to the pion-photon transition form factor in QCD, JHEP 12 (2017) 037 [arXiv:1706.05680] [INSPIRE].

    Article  ADS  Google Scholar 

  62. A. Khodjamirian, T. Mannel and M. Melcher, Flavor SU(3) symmetry in charmless B decays, Phys. Rev. D 68 (2003) 114007 [hep-ph/0308297] [INSPIRE].

  63. S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].

    Article  ADS  Google Scholar 

  64. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  65. M. Beneke, A. Maier, J. Piclum and T. Rauh, The bottom-quark mass from non-relativistic sum rules at NNNLO, Nucl. Phys. B 891 (2015) 42 [arXiv:1411.3132] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. B. Dehnadi, A.H. Hoang and V. Mateu, Bottom and charm mass determinations with a convergence test, JHEP 08 (2015) 155 [arXiv:1504.07638] [INSPIRE].

    Article  Google Scholar 

  67. P. Ball and E. Kou, B → γeν transitions from QCD sum rules on the light cone, JHEP 04 (2003) 029 [hep-ph/0301135] [INSPIRE].

  68. V.M. Braun and A. Khodjamirian, Soft contribution to B → γℓν ℓ and the B-meson distribution amplitude, Phys. Lett. B 718 (2013) 1014 [arXiv:1210.4453] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. M. Beneke, V.M. Braun, Y. Ji and Y.-B. Wei, Radiative leptonic decay B → γℓν ℓ with subleading power corrections, JHEP 07 (2018) 154 [arXiv:1804.04962] [INSPIRE].

    Article  ADS  Google Scholar 

  70. A. Khodjamirian, T. Mannel, N. Offen and Y.-M. Wang, B → πℓν l width and |V ub| from QCD light-cone sum rules, Phys. Rev. D 83 (2011) 094031 [arXiv:1103.2655] [INSPIRE].

    ADS  Google Scholar 

  71. I. Sentitemsu Imsong, A. Khodjamirian, T. Mannel and D. van Dyk, Extrapolation and unitarity bounds for the B → π form factor, JHEP 02 (2015) 126 [arXiv:1409.7816] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. Khodjamirian and A.V. Rusov, B s → Kℓν ℓ and B (s) → π(K)ℓ + ℓ − decays at large recoil and CKM matrix elements, JHEP 08 (2017) 112 [arXiv:1703.04765] [INSPIRE].

    Article  ADS  Google Scholar 

  73. G. Duplancic and B. Melic, B, B s → K form factors: an update of light-cone sum rule results, Phys. Rev. D 78 (2008) 054015 [arXiv:0805.4170] [INSPIRE].

    ADS  Google Scholar 

  74. P. Ball, B → π and B → K transitions from QCD sum rules on the light cone, JHEP 09 (1998) 005 [hep-ph/9802394] [INSPIRE].

  75. C. Bourrely, I. Caprini and L. Lellouch, Model-independent description of B → πℓν decays and a determination of |V ub|, Phys. Rev. D 79 (2009) 013008 [Erratum ibid. D 82 (2010) 099902] [arXiv:0807.2722] [INSPIRE].

  76. C.G. Boyd, B. Grinstein and R.F. Lebed, Constraints on form-factors for exclusive semileptonic heavy to light meson decays, Phys. Rev. Lett. 74 (1995) 4603 [hep-ph/9412324] [INSPIRE].

  77. BaBar collaboration, Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays and determination of |V ub|, Phys. Rev. D 86 (2012) 092004 [arXiv:1208.1253] [INSPIRE].

  78. Belle collaboration, Study of exclusive B → X u ℓν decays and extraction of ∥V ub∥ using full reconstruction tagging at the Belle experiment, Phys. Rev. D 88 (2013) 032005 [arXiv:1306.2781] [INSPIRE].

  79. BaBar collaboration, Study of B → πℓν and B → ρℓν decays and determination of |V ub|, Phys. Rev. D 83 (2011) 032007 [arXiv:1005.3288] [INSPIRE].

  80. BaBar collaboration, Measurement of the B 0 → π ℓ ℓ + ν and B + → η (′) ℓ + ν branching fractions, the B 0 → π − ℓ + ν and B + → ηℓ + ν form-factor shapes and determination of |V ub|, Phys. Rev. D 83 (2011) 052011 [arXiv:1010.0987] [INSPIRE].

  81. Belle collaboration, Measurement of the decay B 0 → π − ℓ + ν and determination of |V ub|, Phys. Rev. D 83 (2011) 071101 [arXiv:1012.0090] [INSPIRE].

  82. M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → Vℓ + ℓ − , Vγ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].

  83. A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.-M. Wang, Charm-loop effect in B → K (*) ℓ + ℓ − and B → K * γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].

  84. A. Khodjamirian, T. Mannel and Y.M. Wang, B → Kℓ + ℓ − decay at large hadronic recoil, JHEP 02 (2013) 010 [arXiv:1211.0234] [INSPIRE].

    Article  ADS  Google Scholar 

  85. M. Dimou, J. Lyon and R. Zwicky, Exclusive chromomagnetism in heavy-to-light FCNCs, Phys. Rev. D 87 (2013) 074008 [arXiv:1212.2242] [INSPIRE].

    ADS  Google Scholar 

  86. J. Lyon and R. Zwicky, Isospin asymmetries in B → (K * , ρ)γ/ℓ + ℓ − and B → Kℓ + ℓ − in and beyond the Standard Model, Phys. Rev. D 88 (2013) 094004 [arXiv:1305.4797] [INSPIRE].

    ADS  Google Scholar 

  87. G. Buchalla and A.J. Buras, The rare decays \( K\to \pi \nu \overline{\nu},\kern0.5em B\to X\nu \overline{\nu} \) and B → ℓ + ℓ − : an update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].

  88. G. Buchalla and A.J. Buras, QCD corrections to the sdZ vertex for arbitrary top quark mass, Nucl. Phys. B 398 (1993) 285 [INSPIRE].

    Article  ADS  Google Scholar 

  89. M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].

  90. J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( K\to \pi \nu \overline{\nu} \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].

    ADS  Google Scholar 

  91. M. Bartsch, M. Beylich, G. Buchalla and D.-N. Gao, Precision flavour physics with \( B\to K\nu \overline{\nu} \) and B → Kℓ + ℓ −, JHEP 11 (2009) 011 [arXiv:0909.1512] [INSPIRE].

    Article  ADS  Google Scholar 

  92. BaBar collaboration, Search for \( B\to {K}^{\left(*\right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].

  93. D. Bigi and P. Gambino, Revisiting B → Dℓν, Phys. Rev. D 94 (2016) 094008 [arXiv:1606.08030] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute of High Energy Physics, CAS, Yuquan Road 19 B, P.O. Box 918(4), Beijing, 100049, China

    Cai-Dian Lü & Yan-Bing Wei

  2. School of Physics, University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China

    Cai-Dian Lü & Yan-Bing Wei

  3. College of Information Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100, Shandong, P.R. China

    Yue-Long Shen

  4. School of Physics, Nankai University, Weijin Road 94, 300071, Tianjin, China

    Yu-Ming Wang & Yan-Bing Wei

Authors
  1. Cai-Dian Lü
    View author publications

    Search author on:PubMed Google Scholar

  2. Yue-Long Shen
    View author publications

    Search author on:PubMed Google Scholar

  3. Yu-Ming Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Yan-Bing Wei
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Yu-Ming Wang or Yan-Bing Wei.

Additional information

ArXiv ePrint: 1810.00819

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, CD., Shen, YL., Wang, YM. et al. QCD calculations of B → π, K form factors with higher-twist corrections. J. High Energ. Phys. 2019, 24 (2019). https://doi.org/10.1007/JHEP01(2019)024

Download citation

  • Received: 09 October 2018

  • Accepted: 18 December 2018

  • Published: 03 January 2019

  • DOI: https://doi.org/10.1007/JHEP01(2019)024

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology

Profiles

  1. Yan-Bing Wei View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature