https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.\n","updatedAt":"2025-11-25T04:10:04.953Z","author":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","fullname":"taesiri","name":"taesiri","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":211,"isUserFollowing":false}},"numEdits":1,"identifiedLanguage":{"language":"en","probability":0.8799499273300171},"editors":["taesiri"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg"],"reactions":[{"reaction":"π₯","users":["AdinaY","kabachuha","Jefxiong"],"count":3}],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2511.18870","authors":[{"_id":"69252c0d16eb3a9f131039d6","name":"Bing Wu","hidden":false},{"_id":"69252c0d16eb3a9f131039d7","name":"Chang Zou","hidden":false},{"_id":"69252c0d16eb3a9f131039d8","name":"Changlin Li","hidden":false},{"_id":"69252c0d16eb3a9f131039d9","name":"Duojun Huang","hidden":false},{"_id":"69252c0d16eb3a9f131039da","name":"Fang Yang","hidden":false},{"_id":"69252c0d16eb3a9f131039db","name":"Hao Tan","hidden":false},{"_id":"69252c0d16eb3a9f131039dc","name":"Jack Peng","hidden":false},{"_id":"69252c0d16eb3a9f131039dd","name":"Jianbing Wu","hidden":false},{"_id":"69252c0d16eb3a9f131039de","user":{"_id":"62a04f5e445b33e7d15e05ee","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/vS1YjcyOucCgFrde0lAvu.png","isPro":false,"fullname":"Xiong","user":"Jefxiong","type":"user"},"name":"Jiangfeng Xiong","status":"claimed_verified","statusLastChangedAt":"2025-11-26T09:28:15.062Z","hidden":false},{"_id":"69252c0d16eb3a9f131039df","name":"Jie Jiang","hidden":false},{"_id":"69252c0d16eb3a9f131039e0","name":"Linus","hidden":false},{"_id":"69252c0d16eb3a9f131039e1","name":"Patrol","hidden":false},{"_id":"69252c0d16eb3a9f131039e2","user":{"_id":"670bc2aac9c7e01d3db61243","avatarUrl":"/avatars/2bd5fba261e710a4c287fcf2f78b584f.svg","isPro":false,"fullname":"Peizhen Zhang","user":"maxpzzhang","type":"user"},"name":"Peizhen Zhang","status":"admin_assigned","statusLastChangedAt":"2025-11-25T12:19:00.711Z","hidden":false},{"_id":"69252c0d16eb3a9f131039e3","name":"Peng Chen","hidden":false},{"_id":"69252c0d16eb3a9f131039e4","name":"Penghao Zhao","hidden":false},{"_id":"69252c0d16eb3a9f131039e5","name":"Qi Tian","hidden":false},{"_id":"69252c0d16eb3a9f131039e6","name":"Songtao Liu","hidden":false},{"_id":"69252c0d16eb3a9f131039e7","user":{"_id":"67f7ab7ef241f0b92ce4b087","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/vDhBPKqfWjMI65K-kL2tm.jpeg","isPro":false,"fullname":"Weijie Kong","user":"Knightbreeze","type":"user"},"name":"Weijie Kong","status":"admin_assigned","statusLastChangedAt":"2025-11-25T12:19:44.134Z","hidden":false},{"_id":"69252c0d16eb3a9f131039e8","name":"Weiyan Wang","hidden":false},{"_id":"69252c0d16eb3a9f131039e9","name":"Xiao He","hidden":false},{"_id":"69252c0d16eb3a9f131039ea","name":"Xin Li","hidden":false},{"_id":"69252c0d16eb3a9f131039eb","name":"Xinchi Deng","hidden":false},{"_id":"69252c0d16eb3a9f131039ec","name":"Xuefei Zhe","hidden":false},{"_id":"69252c0d16eb3a9f131039ed","name":"Yang Li","hidden":false},{"_id":"69252c0d16eb3a9f131039ee","name":"Yanxin Long","hidden":false},{"_id":"69252c0d16eb3a9f131039ef","name":"Yuanbo Peng","hidden":false},{"_id":"69252c0d16eb3a9f131039f0","name":"Yue Wu","hidden":false},{"_id":"69252c0d16eb3a9f131039f1","name":"Yuhong Liu","hidden":false},{"_id":"69252c0d16eb3a9f131039f2","name":"Zhenyu Wang","hidden":false},{"_id":"69252c0d16eb3a9f131039f3","user":{"_id":"6316fe2a6d322c52490f90e8","avatarUrl":"/avatars/8c896b3733e183657009a426834a9dab.svg","isPro":false,"fullname":"Dai Zuozhuo","user":"zyand","type":"user"},"name":"Zuozhuo Dai","status":"admin_assigned","statusLastChangedAt":"2025-11-25T12:19:54.939Z","hidden":false},{"_id":"69252c0d16eb3a9f131039f4","name":"Bo Peng","hidden":false},{"_id":"69252c0d16eb3a9f131039f5","name":"Coopers Li","hidden":false},{"_id":"69252c0d16eb3a9f131039f6","name":"Gu Gong","hidden":false},{"_id":"69252c0d16eb3a9f131039f7","name":"Guojian Xiao","hidden":false},{"_id":"69252c0d16eb3a9f131039f8","name":"Jiahe Tian","hidden":false},{"_id":"69252c0d16eb3a9f131039f9","name":"Jiaxin Lin","hidden":false},{"_id":"69252c0d16eb3a9f131039fa","name":"Jie Liu","hidden":false},{"_id":"69252c0d16eb3a9f131039fb","name":"Jihong Zhang","hidden":false},{"_id":"69252c0d16eb3a9f131039fc","name":"Jiesong Lian","hidden":false},{"_id":"69252c0d16eb3a9f131039fd","name":"Kaihang Pan","hidden":false},{"_id":"69252c0d16eb3a9f131039fe","name":"Lei Wang","hidden":false},{"_id":"69252c0d16eb3a9f131039ff","name":"Lin Niu","hidden":false},{"_id":"69252c0d16eb3a9f13103a00","name":"Mingtao Chen","hidden":false},{"_id":"69252c0d16eb3a9f13103a01","name":"Mingyang Chen","hidden":false},{"_id":"69252c0d16eb3a9f13103a02","name":"Mingzhe Zheng","hidden":false},{"_id":"69252c0d16eb3a9f13103a03","name":"Miles Yang","hidden":false},{"_id":"69252c0d16eb3a9f13103a04","name":"Qiangqiang Hu","hidden":false},{"_id":"69252c0d16eb3a9f13103a05","name":"Qi Yang","hidden":false},{"_id":"69252c0d16eb3a9f13103a06","name":"Qiuyong Xiao","hidden":false},{"_id":"69252c0d16eb3a9f13103a07","name":"Runzhou Wu","hidden":false},{"_id":"69252c0d16eb3a9f13103a08","name":"Ryan Xu","hidden":false},{"_id":"69252c0d16eb3a9f13103a09","name":"Rui Yuan","hidden":false},{"_id":"69252c0d16eb3a9f13103a0a","name":"Shanshan Sang","hidden":false},{"_id":"69252c0d16eb3a9f13103a0b","name":"Shisheng Huang","hidden":false},{"_id":"69252c0d16eb3a9f13103a0c","name":"Siruis Gong","hidden":false},{"_id":"69252c0d16eb3a9f13103a0d","name":"Shuo Huang","hidden":false},{"_id":"69252c0d16eb3a9f13103a0e","name":"Weiting Guo","hidden":false},{"_id":"69252c0d16eb3a9f13103a0f","name":"Xiang Yuan","hidden":false},{"_id":"69252c0d16eb3a9f13103a10","name":"Xiaojia Chen","hidden":false},{"_id":"69252c0d16eb3a9f13103a11","name":"Xiawei Hu","hidden":false},{"_id":"69252c0d16eb3a9f13103a12","name":"Wenzhi Sun","hidden":false},{"_id":"69252c0d16eb3a9f13103a13","name":"Xiele Wu","hidden":false},{"_id":"69252c0d16eb3a9f13103a14","name":"Xianshun Ren","hidden":false},{"_id":"69252c0d16eb3a9f13103a15","name":"Xiaoyan Yuan","hidden":false},{"_id":"69252c0d16eb3a9f13103a16","user":{"_id":"66f6627e08be8ab9ab0833f2","avatarUrl":"/avatars/871a0862c22e0e4f8829144953f81d85.svg","isPro":false,"fullname":"mi","user":"mxy123","type":"user"},"name":"Xiaoyue Mi","status":"claimed_verified","statusLastChangedAt":"2025-11-28T13:49:04.776Z","hidden":false},{"_id":"69252c0d16eb3a9f13103a17","name":"Yepeng Zhang","hidden":false},{"_id":"69252c0d16eb3a9f13103a18","name":"Yifu Sun","hidden":false},{"_id":"69252c0d16eb3a9f13103a19","name":"Yiting Lu","hidden":false},{"_id":"69252c0d16eb3a9f13103a1a","name":"Yitong Li","hidden":false},{"_id":"69252c0d16eb3a9f13103a1b","name":"You Huang","hidden":false},{"_id":"69252c0d16eb3a9f13103a1c","name":"Yu Tang","hidden":false},{"_id":"69252c0d16eb3a9f13103a1d","name":"Yixuan Li","hidden":false},{"_id":"69252c0d16eb3a9f13103a1e","name":"Yuhang Deng","hidden":false},{"_id":"69252c0d16eb3a9f13103a1f","name":"Yuan Zhou","hidden":false},{"_id":"69252c0d16eb3a9f13103a20","name":"Zhichao Hu","hidden":false},{"_id":"69252c0d16eb3a9f13103a21","user":{"_id":"64556769fbe00f9e73c1bddb","avatarUrl":"/avatars/dc0a2d9cf91190d722cb6613072a6556.svg","isPro":false,"fullname":"ZHIGUANG LIU","user":"lz7fdmu","type":"user"},"name":"Zhiguang Liu","status":"admin_assigned","statusLastChangedAt":"2025-11-25T12:23:02.416Z","hidden":false},{"_id":"69252c0d16eb3a9f13103a22","name":"Zhihe Yang","hidden":false},{"_id":"69252c0d16eb3a9f13103a23","name":"Zilin Yang","hidden":false},{"_id":"69252c0d16eb3a9f13103a24","name":"Zhenzhi Lu","hidden":false},{"_id":"69252c0d16eb3a9f13103a25","name":"Zixiang Zhou","hidden":false},{"_id":"69252c0d16eb3a9f13103a26","name":"Zhao Zhong","hidden":false}],"publishedAt":"2025-11-24T08:22:07.000Z","submittedOnDailyAt":"2025-11-25T01:39:58.047Z","title":"HunyuanVideo 1.5 Technical Report","submittedOnDailyBy":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},"summary":"We present HunyuanVideo 1.5, a lightweight yet powerful open-source video generation model that achieves state-of-the-art visual quality and motion coherence with only 8.3 billion parameters, enabling efficient inference on consumer-grade GPUs. This achievement is built upon several key components, including meticulous data curation, an advanced DiT architecture featuring selective and sliding tile attention (SSTA), enhanced bilingual understanding through glyph-aware text encoding, progressive pre-training and post-training, and an efficient video super-resolution network. Leveraging these designs, we developed a unified framework capable of high-quality text-to-video and image-to-video generation across multiple durations and resolutions.Extensive experiments demonstrate that this compact and proficient model establishes a new state-of-the-art among open-source video generation models. By releasing the code and model weights, we provide the community with a high-performance foundation that lowers the barrier to video creation and research, making advanced video generation accessible to a broader audience. All open-source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.","upvotes":25,"discussionId":"69252c0d16eb3a9f13103a27","githubRepo":"https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5","githubRepoAddedBy":"auto","ai_summary":"HunyuanVideo 1.5 is a lightweight video generation model with state-of-the-art visual quality and motion coherence, using a DiT architecture with SSTA and an efficient video super-resolution network.","ai_keywords":["DiT architecture","selective and sliding tile attention","SSTA","glyph-aware text encoding","progressive pre-training","post-training","video super-resolution network","text-to-video","image-to-video"],"githubStars":3562},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"67bbade8a8c89b98ec377944","avatarUrl":"/avatars/640803ef641decd5c30894155bf09b6a.svg","isPro":false,"fullname":"Urodoc Oncall","user":"UDCAI","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"645e553c3b6d85c65e8b0e54","avatarUrl":"/avatars/1fffc6499b9d65b21a895ca96f03b781.svg","isPro":false,"fullname":"Steven","user":"yijunyang","type":"user"},{"_id":"61af81009f77f7b669578f95","avatarUrl":"/avatars/fb50773ac49948940eb231834ee6f2fd.svg","isPro":false,"fullname":"rotem israeli","user":"irotem98","type":"user"},{"_id":"63c5d43ae2804cb2407e4d43","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1673909278097-noauth.png","isPro":false,"fullname":"xziayro","user":"xziayro","type":"user"},{"_id":"66fb03d6b505f1a04c39d935","avatarUrl":"/avatars/e9b830c460ec02037758c9b3469bb8ad.svg","isPro":false,"fullname":"Xuanlang Dai","user":"VVitaminD","type":"user"},{"_id":"677272184d148b904333e874","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/5dUau7gxLk4Wm1TiiJJri.jpeg","isPro":false,"fullname":"Efstathios Karypidis","user":"Sta8is","type":"user"},{"_id":"63a369d98c0c89dcae3b8329","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63a369d98c0c89dcae3b8329/AiH2zjy1cnt9OADAAZMLD.jpeg","isPro":false,"fullname":"Adina Yakefu","user":"AdinaY","type":"user"},{"_id":"63177d85f957903db971a173","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1665094764329-63177d85f957903db971a173.png","isPro":false,"fullname":"Artem","user":"kabachuha","type":"user"},{"_id":"66313d0ac57e46020d0421b6","avatarUrl":"/avatars/d0c75e5a4fef61b37632892632565075.svg","isPro":false,"fullname":"Yannay Alon","user":"YannayAlon","type":"user"},{"_id":"63c6cb6a50cc81901da65e15","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63c6cb6a50cc81901da65e15/t4LN1BPCFlwbSJ9GD9YDd.jpeg","isPro":true,"fullname":"ThΓ©o Pomies","user":"theopomies","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
HunyuanVideo 1.5 Technical Report
Published on Nov 24, 2025
Β·
Submitted by
taesiri
on Nov 25, 2025
Authors:
Bing Wu
,
Chang Zou
,
Changlin Li
,
Duojun Huang
,
Fang Yang
,
Hao Tan
,
Jack Peng
,
Jianbing Wu
,
Jie Jiang
,
Linus
,
Patrol
,
Peng Chen
,
Penghao Zhao
,
Qi Tian
,
Songtao Liu
,
Weiyan Wang
,
Xiao He
,
Xin Li
,
Xinchi Deng
+ 59 authors
Abstract
HunyuanVideo 1.5 is a lightweight video generation model with state-of-the-art visual quality and motion coherence, using a DiT architecture with SSTA and an efficient video super-resolution network.
We present HunyuanVideo 1.5, a lightweight yet powerful open-source video generation model that achieves state-of-the-art visual quality and motion coherence with only 8.3 billion parameters, enabling efficient inference on consumer-grade GPUs. This achievement is built upon several key components, including meticulous data curation, an advanced DiT architecture featuring selective and sliding tile attention (SSTA ), enhanced bilingual understanding through glyph-aware text encoding , progressive pre-training and post-training , and an efficient video super-resolution network . Leveraging these designs, we developed a unified framework capable of high-quality text-to-video and image-to-video generation across multiple durations and resolutions.Extensive experiments demonstrate that this compact and proficient model establishes a new state-of-the-art among open-source video generation models. By releasing the code and model weights, we provide the community with a high-performance foundation that lowers the barrier to video creation and research, making advanced video generation accessible to a broader audience. All open-source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.