Abstract
This is a paper in a series to study vertex algebra-like structures arising from various algebras including quantum affine algebras and Yangians. In this paper, we study notions of \({\hbar}\)-adic nonlocal vertex algebra and \({\hbar}\)-adic (weak) quantum vertex algebra, slightly generalizing Etingof-Kazhdan’s notion of quantum vertex operator algebra. For any topologically free \({{\mathbb C}\lbrack\lbrack{\hbar}\rbrack\rbrack}\)-module W, we study \({\hbar}\)-adically compatible subsets and \({\hbar}\)-adically \({\mathcal{S}}\)-local subsets of (End W)[[x, x −1]]. We prove that any \({\hbar}\)-adically compatible subset generates an \({\hbar}\)-adic nonlocal vertex algebra with W as a module and that any \({\hbar}\)-adically \({\mathcal{S}}\)-local subset generates an \({\hbar}\)-adic weak quantum vertex algebra with W as a module. A general construction theorem of \({\hbar}\)-adic nonlocal vertex algebras and \({\hbar}\)-adic quantum vertex algebras is obtained. As an application we associate the centrally extended double Yangian of \({{\mathfrak s}{\mathfrak l}_{2}}\) to \({\hbar}\)-adic quantum vertex algebras.
Similar content being viewed by others
References
Anguelova, I.I., Bergvelt, M.J.: H D -Quantum vertex algebras and bicharacters. http://arXiv.org/abs/0706.1528[math.QA], 2007
Bakalov B., Kac V.: Field algebras. Internat. Math. Res. Notices 3, 123–159 (2003)
Borcherds, R.E.: Vertex algebras. In: “Topological Field Theory, Primitive Forms and Related Topics” (Kyoto, 1996), edited by Kashiwara, M., Matsuo, A., Saito, K., Satake, I. Progress in Math., Vol. 160, Boston: Birkhäuser, 1998, pp. 35–77
Borcherds, R.E.: Quantum vertex algebras. In: Taniguchi Conference on Mathematics Nara’98 Adv. Stud. Pure Math. 31, Tokyo: Math. Soc. Japan, 2001, pp. 51–74
Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math. 112, Boston: Birkhäuser, 1993
Drinfeld V.: Hopf algebras and Quantum Yang-Baxter Equation. Soviet Math. Dokl. 32, 1060–1064 (1985)
Drinfeld V.: A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl. 36, 212–216 (1988)
Enriquez, B.: PBW and duality theorems for quantum groups and quantum current algebras. http://arXiv.org/abs/math/9904113v4[math.QA], 1999
Etingof P., Kazhdan D.: Quantization of Lie bialgebras, V. Selecta Math. (New Series) 6, 105–130 (2000)
Etingof, P., Frenkel, I., Kirillov, A. Jr.: Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations. Math. Surv. and Mono. 58, Providence, RI: Amer. Math. Soc., 1998
Frenkel E., Kac V., Radul A., Wang W.: W 1+∞ and W(gl ∞) with central charge N. Commun. Math. Phys. 170, 337–357 (1995)
Feingold, A., Frenkel, I.B., Ries, J.F.: Spinor construction of vertex operator algebras, triality, and \({E_{8}^{(1)}}\). Contemporary Math. 121, Providence, RI: Amer. Math. Soc., 1991
Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Appl. Math. Vol. 134, Boston: Academic Press, 1988
Iohara K., Konno M.: A central extension of \({{DY}_{\hbar}(gl_{2})}\) and its vertex representations. Lett. Math. Phys. 37, 319–328 (1996)
Karel M., Li H.-S.: Some quantum vertex algebras of Zamolodchikov-Faddeev type. Commun. Contemp. Math. 11, 829–863 (2009)
Kassel, C.: Quantum Groups. GTM 155, Berlin-Heidelberg-New York: Springer-Verlag, 1995
Khoroshkin, S.M.: Central extension of the Yangian double . http://arXiv.org/abs/q-alg/9602031v1, 1996
Khoroshkin S., Tolstoy V.: Yangian double. Lett. Math. Phys. 36, 373–402 (1996)
Lepowsky, J., Li, H.-S.: Introduction to Vertex Operator Algebras and Their Representations. Progress in Math. 227, Boston: Birkhäuser, 2004
Li H.-S.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109, 143–195 (1996)
Li H.-S.: Axiomatic G1-vertex algebras. Commun. Contemp. Math. 5, 281–327 (2003)
Li, H.-S.: Pseudoderivations, pseudoautomorphisms and simple current modules for vertex algebras. In: Contemporary Math.392, Providence, RI: Amer. Math. Soc., 2005, pp. 55–65
Li H.-S.: Nonlocal vertex algebras generated by formal vertex operators. Selecta Math. (New Series) 11, 349–397 (2005)
Li H.-S.: Constructing quantum vertex algebras. International J. Math. 17, 441–476 (2006)
Li H.-S.: Modules-at-infinity for quantum vertex algebras. Commun. Math. Phys. 282, 819–864 (2008)
Li H.-S., Tan S., Wang Q.: Twisted modules for quantum vertex algebras. J. Pure Appl. Alg. 214, 201–220 (2010)
Meurman, A., Primc, M.: Annihilating fields of standard modules of \({\widetilde{{\mathfrak s}{\mathfrak l}(2,{\mathbb C})}}\) and combinatorial identities. Memoirs Amer. Math. Soc. 137 (652) (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Partially supported by NSF grant DMS-0600189.
Rights and permissions
About this article
Cite this article
Li, H. \({\hbar}\)-adic Quantum Vertex Algebras and Their Modules. Commun. Math. Phys. 296, 475–523 (2010). https://doi.org/10.1007/s00220-010-1026-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00220-010-1026-7