Lecture 4

- How to define "Privacy"?

 -> Differential Privacy
- Revisit Randomized Response
- Laplace Mechanism

How to define "Privacy"?

Appro aches

- 1. Think of possible attacks; Defenses against these attacks

 Examples: K-anonymity
- 2. Formulate general criteria

- Input Table -> Output Table
- · Generalization:

Replace a single value with a set of possible values

- 2 → [1,3]
- · Male → {Male, Female}
- Table is k-anonymous if

 every row matches at least (k-1)

 others in the non-sensitive attributes

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2 3	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	≥40	*	Cancer
6	130**	≥40	*	Heart Disease
7	130**	≥40	*	Viral Infection
8	130**	≥40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Figure 1: A 4-anonymous table.

- Seems to resist "Linkage attacks"

 - → Can't identify a record uniquely
 → Seems hard to link to other info sources
- · What can go wrong?
 - \rightarrow Everyone in their 30's has cancer
- → Rule out other info.

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	≥40	*	Cancer
6	130**	≥40	*	Heart Disease
7	130**	>40	*	Viral Infection
8	130**	≥40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Figure 1: A 4-anonymous table.

Composition.

Cross referencing s

28 years old

2ipcode 13012

In both data sets

Overlap . dotasets

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	≥40	*	Cancer
6	130**	≥40	*	Heart Disease
7	130**	≥40	*	Viral Infection
8	130**	≥40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<35	*	AIDS
2	130**	<35	*	Tuberculosis
3	130**	<35	*	Flu
4	130**	<35	*	Tuberculosis
5	130**	<35	*	Cancer
6	130**	<35	*	Cancer
7	130**	≥35	*	Cancer
8	130**	≥35	*	Cancer
9	130**	≥35	*	Cancer
10	130**	≥35	*	Tuberculosis
11	130**	≥35	*	Viral Infection
12	130**	≥35	*	Viral Infection

- · K-anonymity issues
 - → Specifies a set of acceptable output (k-anonymous tables)
 - -> Does not Specify the "algorithmic " process
 - -> "Flexibility" may leak info.

Meaningful clefinitions Consider the algorithms

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	≥40	*	Cancer
6	130**	≥40	*	Heart Disease
7	130**	≥40	*	Viral Infection
8	130**	≥40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Figure 1: A 4-anonymous table.

Differential Privacy (Dwork, McSherry, Nissim, Smith)

· Algorithmic Property.

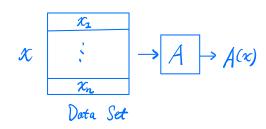
Rigorous quarantees against arbitrary external info.

Resists known attacks

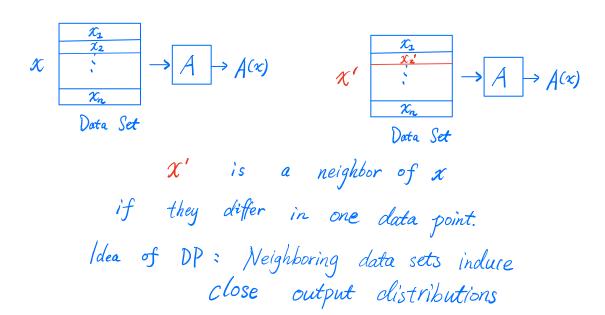
Data domain X (eg. $\{0,1\}^d$, \mathbb{R}^d).

Data set $x = (x_1, x_2, ..., x_n) \in X^n$ (Think of x as fixed, not random)

Ranclomized Algorithm A $\Rightarrow A(x)$ is a random variable.



Thought Experiment.



Definition. (Differential Privacy).

A is \mathcal{E} -differentially private if for all neighbors \mathcal{X} and \mathcal{X}' for all subsets E of outputs $\mathbb{P}[A(x) \in E] \leq \mathbb{P}[A(x') \in E]$ This is an algorithmic property.

Definition. (Differential Privacy) A is \mathcal{E} -differentially private if for all neighbors \mathcal{X} and \mathcal{X}' for all subsets E of outputs $P[A(x) \in E] \leq e^{\mathcal{E}} P[A(x') \in E]$

What is ε ?

- · Measure of info leakage (colled max divergence)
- Small constant = $\frac{1}{10}$, 1, but not $\frac{1}{2^{80}}$ or 100

Example: Randomized Response (In lecture 1)

Each person has a secret bit $X_i = 0$ or $X_i = 1$ (Have you ever clone $X \upharpoonright Z$?)

RR

First coin "H"Second Coin "H" "T"

RR is (n(3) - differtially private

Proof. • Fix two neighboring data sets
$$\mathcal{X} = (\chi_1, \dots, \chi_i, \dots, \chi_n) , \quad \mathcal{X}' = (\chi_1, \dots, \chi_i', \dots, \chi_n)$$

• To start, fix some output
$$y = (y_1, ..., y_n) \in \{0,1\}^n$$

$$\frac{P[RR(x)=y]}{P[RR(x')=y]} = \frac{P[Y_i=y_i|x_i]}{P[Y_i=y_i|x_i']} \quad \text{3 or } \frac{1}{3}$$

$$\Rightarrow \mathbb{P}[RR(x) = y] \leq e^{\ln \beta} \mathbb{P}[RR(x') = y]$$

o To Complete, For any
$$E \subseteq \{a_1\}^n$$

$$P[RR(x) \in E] = \sum_{y \in E} P[RR(x) = y]$$

$$\leq e^{\epsilon} \sum_{y \in E} P[RR(x') = y] = P[RR(x') \in E]$$

Basic Proof Strategy:

for all neighbors
$$x$$
 and x'
for all subsets E of outputs
$$\mathbb{P}[A(x) \in E] \leq \mathbb{P}[A(x') \in E]$$

$$P[A(x)=y] \leq e^{\varepsilon}P[A(x')=y]$$

Noise addition.

function
$$f$$

Input

 $\chi = (\chi_1, ..., \chi_n) \longrightarrow A \longrightarrow A(\alpha) = f(\alpha) + \text{noise}$

Randomized

- Goal: Release approximation to $f(x) \in \mathbb{R}^d$ e.g., # ppl wearing socks,
- Intuition: f(x) can be released accurately if f is insensitive to the change of individual examples χ_1, \ldots, χ_n

Sensitivity.

- Intuition: f(x) can be released accurately if f is insensitive to the change of individual examples χ_1, \ldots, χ_n

Global Sensitivity:

$$GS_f = \max_{\chi,\chi' \text{ neighbors}} \| f(\chi) - f(\chi') \|_1$$

Example:
$$f(x) \equiv fraction$$
 of people wearing socks
$$GS_f = \frac{1}{n}$$

Laplace Mechanism.

$$A(x) = f(x) + (z_1, ..., z_d)$$

where each Z_i drawn i.i.d. from $Lap(GS_f)$

Laplace Lap(b)
Distribution

$$PDF(x) = \frac{1}{2b} exp\left(\frac{-\lfloor x \rfloor}{b}\right)$$

$$\underbrace{\frac{1}{2b}}_{\text{Xop(6)}} [|x|] = b.$$

Theorem. AL is &-differentially private.

Examples.

o Proportion.
$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \chi_{i}$$
"fraction of people wearing socks"
$$GS_{f} = \frac{1}{n}.$$

• Histogram. Data domain
$$X = B_1 \cup B_2 \cup \cdots \cup B_d$$

$$f(x) = (n_1, \dots, n_d), \quad n_j = \#\{i \in X_i \in B_j\}$$

Examples

o Sequence of d Statistical queries averages

Properties
$$\phi_1, \dots, \phi_d$$
 with each $\phi_j : \chi \mapsto [0,1]$
For each j , $f_j(x) = \frac{1}{n} \sum_{i=1}^n \phi_j(x_i)$
 $GS_{f_j} \leq \frac{1}{n}$
 $f(x) = (f_1(x), \dots, f_d(x)), f(x) - f(x') \in [-\frac{1}{n}, \frac{1}{n}]^d$
 $GS_f \leq \frac{d}{n}$