Air Pollution Status in 10 Mega-Cities in China during the Initial Phase of the COVID-19 Outbreak
<p>Map of China displaying the 10 mega-cities observed in the study. The map was adopted from Zhou et al. “Effects of spatial form on urban commute for major cities in China,” and modified for use in this publication [<a href="#B14-ijerph-18-03172" class="html-bibr">14</a>].</p> "> Figure 2
<p>A visual summary of AQI scores and air pollutants concentration in 10 major Chinese cities during the initial phase of the COVID-19 outbreak (lockdown period), showing the minimum, median, maximum, lower quartile, and upper quartile value of each parameter.</p> "> Figure 2 Cont.
<p>A visual summary of AQI scores and air pollutants concentration in 10 major Chinese cities during the initial phase of the COVID-19 outbreak (lockdown period), showing the minimum, median, maximum, lower quartile, and upper quartile value of each parameter.</p> "> Figure 3
<p>Graphical display of air pollution level in 10 major Chinese cities several months before and during the initial phase of the COVID-19 outbreak (lockdown period), highlighting the difference in air quality at different periods. A—1 month to 3 months before the outbreak (October 2019 to December 2019); B—3 months to 6 months before the outbreak (July 2019 to September 2019); C—6 months to 9 months before the outbreak (April 2019 to June 2019); D—9 months to 12 months before the outbreak (January 2019 to March 2019); K (constant)—during the outbreak (January 2020 to March 2020).</p> "> Figure 3 Cont.
<p>Graphical display of air pollution level in 10 major Chinese cities several months before and during the initial phase of the COVID-19 outbreak (lockdown period), highlighting the difference in air quality at different periods. A—1 month to 3 months before the outbreak (October 2019 to December 2019); B—3 months to 6 months before the outbreak (July 2019 to September 2019); C—6 months to 9 months before the outbreak (April 2019 to June 2019); D—9 months to 12 months before the outbreak (January 2019 to March 2019); K (constant)—during the outbreak (January 2020 to March 2020).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Analysis
2.2.1. First Phase: Data Categorization
- Category A—1 month to 3 months before the outbreak (October 2019 to December 2019);
- Category B—3 months to 6 months before the outbreak (July 2019 to September 2019);
- Category C—6 months to 9 months before the outbreak (April 2019 to June 2019);
- Category D—9 months to 12 months before the outbreak (January 2019 to March 2019);
- Category K (constant)—during the outbreak (January 2020 to March 2020).
2.2.2. Second Phase: Descriptive Analysis
2.2.3. Third Phase: Independent t-Test Analysis
2.2.4. Fourth Phase: Estimation of Effect Size
3. Results
3.1. Descriptive Statistics
3.2. Graphical Presentation of AQI Scores and Key Air Pollutants Concentration Level
3.3. Description of Air Quality
3.4. Independent t-Test Result
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Environmental Protection Agency. Criteria Air Pollutants. Available online: https://www.epa.gov/criteria-air-pollutants (accessed on 22 February 2021).
- Shang, Y.; Sun, Z.; Cao, J.; Wang, X.; Zhong, L.; Bi, X.; Li, H.; Liu, W.; Zhu, T.; Huang, W. Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. Environ. Int. 2013, 54, 100–111. [Google Scholar] [CrossRef]
- Cao, J.; Xu, H.; Xu, Q.; Chen, B.; Kan, H. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese cities. Environ. Health Perspect. 2012, 120, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Mokoena, K.K.; Ethan, C.J.; Yu, Y.; Shale, K.; Liu, F. Ambient air pollution and respiratory mortality in Xi’an, China: A time-series analysis. Respir. Res. 2019, 20, 139–147. [Google Scholar] [CrossRef]
- Xu, M.; Guo, Y.; Zhang, Y.; Westerdah, D.; Mo, Y.; Liang, F.; Pan, X. Spatiotemporal analysis of particulate air pollution and ischemic heart disease mortality in Beijing, China. Environ. Health 2014, 13, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, C.; Chen, M. The impacts of Chinese Nian culture on air pollution. J. Clean. Prod. 2016, 112, 1740–1745. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, T.; Kipen, H.; Wang, G.; Huang, W.; Rich, D.; Zhu, P.; Wang, Y.; Lu, S.E.; Ohman-Strickland, P.; et al. Cardiorespiratory biomarker responses in healthy young adults to drastic air quality changes surrounding the 2008 Beijing Olympics. Res. Rep. Health Eff. Inst. 2013, 174, 5–174. [Google Scholar]
- Zhou, Y.; Wu, Y.; Yang, L.; Fu, L.; He, K.; Wang, S.; Hao, J.; Chen, J.; Li, C. The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China. Atmos. Environ. 2010, 44, 285–293. [Google Scholar] [CrossRef]
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.L. Air pollution in Australia: Review of costs, sources and potential solutions. Health Promot. J. Austr. 2005, 16, 213–220. [Google Scholar] [CrossRef]
- Chappell, B. Coronavirus Has Now Spread to All Regions of Mainland China. NPR. Available online: https://www.npr.org/sections/goatsandsoda/2020/01/30/801142924/coronavirus-has-now-spread-to-all-regions-of-mainland-china (accessed on 1 April 2020).
- AQI-China. Available online: https://www.aqistudy.cn/historydata/weixin.php (accessed on 11 February 2020).
- McMahon, J. New Satellite Video Shows China Pollution Vanishing during COVID-19 Lockdown—Then Coming Back. Available online: https://www.forbes.com/sites/jeffmcmahon/2020/03/22/video-watch-from-space-as-air-pollution-vanishes-over-china-during-coronavirus-lockdown-then-returns/#5323cff535f0 (accessed on 5 April 2020).
- Zhao, J.; Xiao, L.; Tang, L.; Shi, L.; Su, X.; Wang, H.; Song, Y.; Shao, G. Effects of spatial form on urban commute for major cities in China. Int. J. Sustain. Dev. World 2014, 21, 361–368. [Google Scholar] [CrossRef]
- Pérez-Vicente, S.; Expósito-Ruiz, M. Descriptive statistics. Br. Dent. J. 2009, 37, 314–320. [Google Scholar] [CrossRef]
- Landau, S.; Everitt, B.S. A Handbook of Statistical Analyses Using SPSS; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004; pp. 36–69. [Google Scholar]
- Piovesana, A.; Senior, G. How big is small: Sample size and skewness. Assessment 2016, 25, 793–800. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 1–567. [Google Scholar] [CrossRef]
- Rstats Institute Missouri. Tables and Calculators. Available online: https://www.missouristate.edu/rstats/Tables-and-Calculators.htm (accessed on 14 April 2020).
- Durlak, J. How to select, calculate, and interpret effect sizes. J. Pediatr. Psychol. 2009, 34, 917–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawilowsky, S. New effect size rules of thumb. J. Mod. Appl. Stat. Meth. 2009, 8, 467–474. [Google Scholar] [CrossRef]
- Li, B.; Li, S.; Xiao, C.; Zhang, C.; Chen, J.; Lin, H.; Du, Y.; Liu, M. Time series analysis of deaths of residents 624 with malignant granules in Shenyang, China. Oncol. Lett. 2018, 16, 4507–4511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ethan, C.J.; Mokoena, K.K.; Yu, Y.; Shale, K.; Fan, Y.; Rong, J.; Liu, F. Association between PM2.5 and mortality of stomach and colorectal cancer in Xi’an: A time-series study. Environ. Sci. Pollut. Res. 2020, 27, 22353–22363. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, K. Interpreting Cohen’s D Effect Size: An Interactive Visualization (Version 2.1.1) [Web App]. R Psychologist. Available online: https://rpsychologist.com/d3/cohend/ (accessed on 15 April 2020).
- ABC News. Coronavirus Covid-19 Prompts China to Lock Down Its Mega-Cities as the Death Toll Climbs. Available online: https://www.abc.net.au/news/2020-02-15/coronavirus-lockdown-in-china-millions-put-into-quarantine/11968114 (accessed on 18 April 2020).
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef]
- Fang, W.; Song, W.; Liu, L.; Chen, G.; Ma, L.; Liang, Y.; Xu, Y.; Wang, X.; Ji, Y.; Zhuang, Y.; et al. Characteristics of indoor and outdoor fine particles in heating period at urban, suburban, and rural sites in Harbin, China. Environ. Sci. Pollut. Res. 2020, 27, 1825–1834. [Google Scholar] [CrossRef]
- NASA (National Aeronautics and Space Administration). Airborne Nitrogen Dioxide Plummets over China. Available online: https://earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-over-china (accessed on 20 April 2020).
- Wong, S. Number of Cars in China 2009–2019. Available online: https://www.statista.com/statistics/285306/number-of-car-owners-in-china/2020 (accessed on 24 February 2021).
- Samoli, E.; Aga, G.; Touloumi, K.; Nisiotis, B.; Forsberg, A.; Lefranc, J.; Pekkanen, B.; Wojtyniak, C.; Schindler, E.; Niciu, R.; et al. Short-term effects of nitrogen dioxide on mortality: An analysis within the APHEA project. Eur. Respir. J. 2006, 27, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Filonchyk, M.; Peterson, M. Air Quality Changes in Shanghai, China, and the Surrounding Urban Agglomeration during the COVID-19 Lockdown. J. Geovis. Spat. Anal. 2020, 4, 22. [Google Scholar] [CrossRef]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.X.; Huang, C.L.; Yuan, Y.; Tan, H.P. Influence of COVID-19 event on air quality and their Association in Mainland China. Aerosol. Air Qual. Res. 2020, 20, 1541–1551. [Google Scholar] [CrossRef]
- Zeng, J.; Qiuqin, H. Does industrial air pollution drive health care expenditures? Spatial evidence from China. J. Clean. Prod. 2019, 218, 400–408. [Google Scholar] [CrossRef]
- Orru, H.I.; Pindus, J.; Orru, M.; Kesanurm, K.; Lang, K.; Tomasova, A.J. Residents’ self-reported health effects and annoyance in relation to air pollution exposure in an industrial area in eastern-Estonia. Int. J. Environ. Res. Public Health 2018, 15, 252. [Google Scholar] [CrossRef] [Green Version]
- Silver, B.; He, X.; Arnold, S.R.; Spracklen, D.V. The impact of COVID-19 control measures on air quality in China. Environ. Res. Lett. 2020, 15, 084021. [Google Scholar] [CrossRef]
- Cohen, A.J.; Ross, A.H.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The Global Burden of Disease due to Outdoor Air Pollution. J. Toxicol. Environ. Health A 2005, 68, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
City | Mean(SD) | Median | Min | Max | IQR | Range | P25 | P75 | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 79.1 (53.4) | 62 | 30 | 257 | 49 | 227 | 40 | 89 | 1.80 | 2.67 |
Shanghai | 64.5 (28.5) | 56 | 30 | 173 | 28 | 143 | 45 | 73 | 1.82 | 3.53 |
Xi’an | 119.7 (60.3) | 98 | 33 | 278 | 77 | 245 | 78 | 155 | 0.91 | 0.13 |
Chongqing | 66.1 (20.0) | 64 | 29 | 119 | 24 | 90 | 53 | 77 | 0.49 | −0.03 |
Wuhan | 65.4 (28.3) | 60 | 20 | 142 | 35 | 122 | 43 | 78 | 0.97 | 0.51 |
Guangzhou | 55.6 (19.4) | 54 | 20 | 122 | 24 | 102 | 41 | 65 | 0.63 | 0.53 |
Chengdu | 78.3 (28.2) | 72 | 29 | 156 | 42 | 127 | 58 | 100 | 0.60 | −0.27 |
Harbin | 115.5 (78.9) | 83 | 38 | 327 | 113 | 289 | 52 | 165 | 1.12 | 0.23 |
Tianjin | 98.8 (65.0) | 76 | 32 | 289 | 71 | 257 | 51 | 122 | 1.44 | 1.41 |
Shenzhen | 43.8 (10.8) | 44 | 19 | 75 | 12 | 56 | 38 | 50 | 0.15 | 0.13 |
City | 1–3 Months b/o | 3–6 Months b/o | 6–9 Months b/o | 9–12 Months b/o | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Med | Min | Max | Mean | Med | Min | Max | Mean | Med | Min | Max | Mean | Med | Min | Max | |
Beijing | 72.5 b | 67 | 23 | 233 | 92.1 a | 94.5 | 28 | 178 | 99.0 a | 94 | 36 | 195 | 82.0 a | 69.5 | 30 | 267 |
Shanghai | 70.9 a | 65 | 20 | 148 | 67.4 a | 64 | 23 | 181 | 76.5 a | 68 | 36 | 202 | 75.5 a | 69 | 34 | 260 |
Xi’an | 103.8 | 87 | 25 | 319 | 83.0 b | 84 | 32 | 150 | 93.5 b | 83 | 33 | 482 | 137.1 a | 110 | 54 | 346 |
Chongqing | 64.2 b | 57 | 27 | 149 | 79.2 a | 72 | 32 | 203 | 64.9 b | 54 | 30 | 153 | 78.4 a | 74 | 28 | 175 |
Wuhan | 81.7 a | 83 | 25 | 180 | 92.9 a | 91.5 | 35 | 171 | 81.7 a | 79 | 26 | 141 | 95.9 a | 89 | 28 | 214 |
Guangzhou | 91.3 a | 87.5 | 38 | 164 | 80.4 a | 72 | 24 | 167 | 62.5 a | 57 | 36 | 168 | 63.3 a | 58.5 | 25 | 122 |
Chengdu | 77.0 a | 67 | 32 | 183 | 71.4 b | 60 | 33 | 185 | 74.6 b | 67 | 30 | 171 | 84.2 a | 79 | 36 | 152 |
Harbin | 73.9 b | 53 | 23 | 298 | 45.3 b | 42 | 18 | 103 | 68.8 b | 56 | 20 | 459 | 106.1 b | 86 | 35 | 414 |
Tianjin | 89.9 a | 77 | 25 | 225 | 100.8 a | 98 | 28 | 191 | 106.6 a | 95 | 37 | 282 | 102.3 a | 80 | 33 | 298 |
Shenzhen | 77.3 b | 73 | 41 | 180 | 62.1 a | 42 | 19 | 176 | 43.4 b | 38 | 20 | 110 | 47.7 a | 45 | 21 | 99 |
Period | During the Outbreak | 1–3 Months b/o | 9–12 Months b/o | |||
---|---|---|---|---|---|---|
City | AQI (μg m−3) Score | Description | AQI (μg m−3) Score | Description | AQI (μg m−3) score | Description |
Beijing | 79.1 | Good | 72.5 | Good | 82.0 | Good |
Shanghai | 64.5 | Good | 70.9 | Good | 75.5 | Good |
Xi’an | 119.7 | Light pollution | 103.8 | Light pollution | 137.1 | Light pollution |
Chongqing | 66.1 | Good | 64.2 | Good | 78.4 | Good |
Wuhan | 65.4 | Good | 81.7 | Good | 95.9 | Good |
Guangzhou | 55.6 | Good | 91.3 | Good | 63.3 | Good |
Chengdu | 78.3 | Good | 77.0 | Good | 84.2 | Good |
Harbin | 115.5 | Light pollution | 73.9 | Good | 106.1 | Light pollution |
Tianjin | 98.8 | Good | 89.9 | Good | 102.3 | Light pollution |
Shenzhen | 43.8 | Excellent | 77.3 | Good | 47.7 | Excellent |
City | A vs. K | B vs. K | C vs. K | D vs. K | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Diff (95% CI) | t-Value | Effect Size | Mean Diff (95% CI) | t-Value | Effect Size | Mean Diff (95% CI) | t-Value | Effect Size | Mean Diff (95% CI) | t-Value | Effect Size | |
Beijing | −6.6 (−20.0, 6.8) | 0.975 | −0.144 | 13.0 (−0.9, 26.9) | 1.847 | 0.273 | 19.9 (5.8, 34.1) c | 2.775 | 0.411 * | 2.9 (−12.1, 17.9) | 0.386 | 0.057 |
Shanghai | 6.4 (−1.5, 14.3) | 1.592 | 0.236 | 2.9 (−5.9, 11.7) | 0.646 | 0.096 | 11.9 (3.1, 20.8) c | 2.657 | 0.394 * | 11.1 (2.9, 19.2) c | 2.662 | 0.396 * |
Xi’an | −15.8 (−33.4, 1.7) | −1.780 | −0.236 | −36.7 (−50.7, −22.7) | −5.163 | −0.763 * | −26.2 (−43.7, −8.7) | −2.961 | −0.439 * | 17.5 (−1.8, 36.7) | 1.791 | 0.266 |
Chongqing | −1.9 (−9.1, 5.3) | −0.526 | −0.078 | 13.1 (3.9, 22.2) c | 2.835 | 0.419 * | −1.1 (−8.3, 6.0) | −0.313 | −0.047 | 12.4 (4.8, 19.9) c | 3.223 | 0.479 * |
Wuhan | 16.4 (7.9, 24.8) c | 3.822 | 0.565 * | 27.5 (18.3, 36.7) c | 5.893 | 0.871 * | 16.3 (8.1, 24.6) c | 3.890 | 0.577 * | 30.5 (20.4, 40.7) c | 5.944 | 0.884 * |
Guangzhou | 35.7 (28.2, 43.1) c | 9.414 | 1.392 * | 24.8 (15.8, 33.9) c | 5.421 | 0.802 * | 6.9 (1.0, 13.0) c | 2.266 | 0.336 * | 7.7 (1.7, 13.7) c | 2.532 | 0.377 * |
Chengdu | −1.3 (−10.8, 8.2) | −0.268 | −0.040 | −6.9 (−16.1, 2.3) | −1.486 | −0.220 | −3.7 (−12.2, 4.8) | −0.854 | −0.127 | 5.9 (−2.1, 13.9) | 1.464 | 0.218 |
Harbin | −41.6 (−61.7, −21.5) | −4.089 | −0.605 * | −70.1 (−86.6, −53.5) | −8.324 | −1.231 * | −46.7 (−66.2, −27.1) | −4.705 | −0.697 * | −9.4 (−31.0, 12.1) | −0.860 | −0.128 |
Tianjin | −8.9 (−25.1, 7.2) | −1.090 | −0.161 | 2.0 (−14.0, 17.9) | 0.243 | 0.036 | 7.7 (−8.8, 24.3) | 0.923 | 0.137 | 3.5 (−15.6, 22.4) | 0.368 | 0.055 |
Shenzhen | −15.8 (−33.4, 1.7) | −1.780 | 1.751 | −36.7 (−50.7, −22.7) | −5.163 | 0.597 * | −26.2 (−43.7, −8.7) | −2.961 | −0.024 * | 17.5 (−1.7, 36.7) | 1.791 | 0.300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ethan, C.J.; Mokoena, K.K.; Yu, Y. Air Pollution Status in 10 Mega-Cities in China during the Initial Phase of the COVID-19 Outbreak. Int. J. Environ. Res. Public Health 2021, 18, 3172. https://doi.org/10.3390/ijerph18063172
Ethan CJ, Mokoena KK, Yu Y. Air Pollution Status in 10 Mega-Cities in China during the Initial Phase of the COVID-19 Outbreak. International Journal of Environmental Research and Public Health. 2021; 18(6):3172. https://doi.org/10.3390/ijerph18063172
Chicago/Turabian StyleEthan, Crystal Jane, Kingsley Katleho Mokoena, and Yan Yu. 2021. "Air Pollution Status in 10 Mega-Cities in China during the Initial Phase of the COVID-19 Outbreak" International Journal of Environmental Research and Public Health 18, no. 6: 3172. https://doi.org/10.3390/ijerph18063172
APA StyleEthan, C. J., Mokoena, K. K., & Yu, Y. (2021). Air Pollution Status in 10 Mega-Cities in China during the Initial Phase of the COVID-19 Outbreak. International Journal of Environmental Research and Public Health, 18(6), 3172. https://doi.org/10.3390/ijerph18063172