Abstract
Quantum computers have the capability of out-performing their classical counterparts for certain computational problems1. Several scalable quantum-computing architectures have been proposed. An attractive architecture is a large set of physically independent qubits arranged in three spatial regions where (1) the initialized qubits are stored in a register, (2) two qubits are brought together to realize a gate and (3) the readout of the qubits is carried out2,3. For a neutral-atom-based architecture, a natural way to connect these regions is to use optical tweezers to move qubits within the system. In this letter we demonstrate the coherent transport of a qubit, encoded on an atom trapped in a submicrometre tweezer, over a distance typical of the separation between atoms in an array of optical traps4,5,6. Furthermore, we transfer a qubit between two tweezers, and show that this manipulation also preserves the coherence of the qubit.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
265,23 € per year
only 22,10 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
39,95 €
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Calarco, T., Dorner, U., Julienne, P. S., Williams, C. J. & Zoller, P. Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004).
Bergamini, S. et al. Holographic generation of micro-trap arrays for single atoms using a programmable phase modulator. J. Opt. Soc. Am. B 21, 1889–1894 (2004).
Dumke, R. et al. Micro-optical realization of arrays of selectively addressable dipole traps: A scalable configuration for quantum computation with atomic qubits. Phys. Rev. Lett. 89, 097903 (2002).
Miroshnychenko, Y. et al. Quantum engineering: An atom-sorting machine. Nature 442, 151 (2006).
Chiaverini, J. et al. Implementation of the semiclassical quantum Fourier transform in a scalable system. Science 308, 997–1000 (2005).
Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).
Rowe, M. A. et al. Transport of quantum states and separation of ions in a dual RF ion trap. Quantum Inf. Comput. 2, 257–271 (2002).
Schrader, D. et al. Neutral atom quantum register. Phys. Rev. Lett. 93, 150501 (2004).
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).
Lee, P. J. et al. Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 99, 020402 (2007).
Jaksch, D., Briegel, H. J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).
Brennen, G. K., Caves, C. M., Jessen, P. S. & Deutsch, I. H. Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060–1063 (1999).
Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).
Dorner, U., Calarco, T., Zoller, P., Browaeys, A. & Grangier, P. Quantum logic via optimal control in holographic dipole traps. J. Opt. B 7, S341–S346 (2005).
Kuhr, S. et al. Coherence properties and quantum state transportation in an optical conveyor belt. Phys. Rev. Lett. 91, 213002 (2003).
Mandel, O. et al. Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003).
Schlosser, N., Reymond, G. & Grangier, P. Collisional blockade in microscopic optical dipole traps. Phys. Rev. Lett. 89, 023005 (2002).
Sortais, Y. R. P. et al. Diffraction-limited optics for single-atom manipulation. Phys. Rev. A 75, 013406 (2007).
Jones, M. P. A. et al. Fast quantum state control of a single trapped neutral atom. Phys. Rev. A 75, 040301(R) (2007).
Lett, P. D. et al. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169–172 (1988).
Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).
Browaeys, A. et al. Transport of atoms in a quantum conveyor belt. Phys. Rev. A 72, 053605 (2006).
Acknowledgements
We would like to thank W. D. Phillips, T. Porto, I. Deutsch and P. Jessen for stimulating discussions. We acknowledge financial support from IFRAF, ARDA/DTO and the European Integrated project SCALA. LCFIO is CNRS UMR8501. M.P.A.J. and A.M.L. are supported by Marie Curie Fellowships. A.G. is supported by a DGA Fellowship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Beugnon, J., Tuchendler, C., Marion, H. et al. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nature Phys 3, 696–699 (2007). https://doi.org/10.1038/nphys698
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys698
This article is cited by
-
Logical quantum processor based on reconfigurable atom arrays
Nature (2024)
-
Multi-ensemble metrology by programming local rotations with atom movements
Nature Physics (2024)
-
Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays
Nature Physics (2024)
-
Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays
Nature Communications (2022)
-
One-dimensional arrays of optical dark spot traps from nested Gaussian laser beams for quantum computing
Applied Physics B (2022)